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Self-driving vehicles

Safety (Economic Cos’t)1
$242B

Safety (Societal harm)1

$594B
Prooluctivity4
$1.315T
Congestion®
$160B
Health®
Carsharing * $15B
$402B

T [Blincoe et al., NHTSA Report, 2015]
2 [Schrank et al., Texas A&M Transportation Institute, 2015]

3 [Levy et al., Environmental Health, 2010]
4 [Spieser, Treleaven, Zhang, Frazzoli, Morton, Pavone, Road Vehicle Automation, 2014]
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AMOoD systems and
the bullt environment

e Congestion

“... the additional empty repositioning trips made by [shared autonomous vehicles| increased
congestion and travel times and a significant number of [shared autonomous vehicles| were needed
to provide effective service.”

[Levin et al. 20106]

“Robocars present one risk of increased congestion, because they allow vehicles to move while
empty. ... Empty vehicles can increase congestion.”
— Brad Templeton

e The electric power network

“Depending on the scenario, price may increase by only 1.2-2.7 percent (in WECC — RMP/ANM) or,
for evening recharging at 6 kW, by as much as 141 percent (in FRCC), 196 percent (in WECC-CA)
and 297 percent (in SERC). In contrast to what was suggested by other research, the model predicts
increases in electricity prices for almost all regions.”

[Hadley and Tsvetkova 2009]

“WV2G could stabilize large-scale (one-half of US electricity) wind power with 3% of the fleet
dedicated to regulation for wind, plus 8-38% of the fleet providing operating reserves or storage for
wind.”

[Kempton and Tomic 2005]



Proplem statement

® Propose models that capture the the interaction between
AMoD systems and the Dbuilt environment, with particular
attention to traffic congestion and the electric power network.

® Propose control algorithms that optimize the performance of
such AMoD systems.

® \alidate these algorithms with case studies with real-world
data.



N the literature

Control of AMoD systems

No interaction with the built environment



Nnthe I

Traffic congestion

e [raffic modeling:
e Static models [Wardrop 1952]

cra

ure

No optimization

e Simulation models [Treiber, Hennecke, Helbing, 2000; Maciejevski 2017; Fagnant et al. 2014,

2010]

* Queueing Models (osorio, Bierlaire, 2009

e Dynamic Traffic Assignment (DTA) and System-Optimal DTA

[Janson 1991]

No rebalancing
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Nnthe I

EVs and the power network

cra

® SChedU”ﬂg Charging [Rotering and llic 2011; Turitsyn

et al. 2010; Tushar et al. 2012]

e | ocation of charging stations [coeke and

Schneider 2015; Pourazarm et al. 2016]

e Macroeconomic effect of EVS Hadey and

Tsvetkova 2009]

e (Game-theoretical models isioshansi 2012: Wang

et al. 2010]

e Joint routing, charging, and economic
dispatch (aizadeh et ai. 2016; knodayar et al. 2013

ure

No feedback

No spatial
model

Private vehicles
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Contribution

® Will AMoD systems increase urban congestion”?

Not if properly routed [Zhang*, Rossi* and Pavone 2016a, Robotics:
Science and Systems; Rossi et al. 2017, Autonomous Robots, in press.]

® Wil fleets of electric vehicles help control the power network"?

Yes, if properly coordinated [Rossi et al., in preparation for RSS 2018]

Other contributions

® Randomised algorithms for efficient routing in AMoD systems
® Model-predictive control of AMoD fleets with charging constraints [Zhang, Rossi and Pavone 2016b, ICRA]

® BMPC queuing-theoretical models of AMoD systems [Iglesias et al. 2016 WAFR; Iglesias et al. 2018,
submitted to the International Journal of Robotics Research]

® Data-driven control of AMoD systems with LSTM estimation of customer demand [Iglesias et al. 2018,

ICRA]
12



Network flow model

® Highly scalable (LP)

® \/ery expressive

i k
F

® No stochasticity Expectation of a stochastic process

® Continuum approximation Flow decomposition and sampling
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PART |

AMoD SYSTEMS AND CONGESTION
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Our approach: assumptions

é- °[ »~—Average trip duration ]

Customer demand is time- 33 ,
. . E, f
INnvariant - *

Time of the day

The road network Is node-
symmetric

Congestion is a threshold
phenomenon

Speed

— BPR model
— Threshold model

Number of vehicles 15



Customers and roads

* Transportation requests: origin,
destination, rate of demand
(customers/minute)

* Trips:

» Customer trips service
transportation requests

» Rebalancing trips realign
vehicles with requests

 Road network model:
» Nodes: intersections

» Directed, capacitated edges:
roads

16



R0ad network and flows

- Customer flows
* Rebalancing flows
 Graph cut (S, S)

» Edges separating S
and S

» Cut capacity Coyut, Cin
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R0ad network and flows

o Customer flows
* Rebalancing flows
- Graph cut (S, S)

» Edges separating S
and S

» Cut capacity Cout, Cin
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| neoretical results

\_

Node-symmetric road graph *
Feasible customer flows

Sufficient condition for feasibility of rebalancing

Feasible rebalancing
flows

J

1

2.

. In a node-symmetric road network rebalancing
does not increase congestion

If goal Is to maximize customer satisfaction,
customer flows and rebalancing flows are
decoupled and can be computed separately

21



Are road networks symmetric’

Avg. frac. capacity

disparity Std. dev.

Urban center

1.003-104

Chicago, IL 1.2972-104

New York, NY 1.6556-104 1.304 - 104

Colorado Springs, 31772 . 104 5 308104
CO

Los Angeles, CA 0.9233-10+4 0.676-10+4

Mobile, AL 1.9368 - 104 1.452-104

Portland, OR 1.0769-104 0.778-10+4

Very high degree of node-symmetry
(even with many one-way streets)
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A real-time congestion-aware
repbalancing algorithm

e Customers are routed on fastest

route as soon as a vehicle
available

 Empty vehicles are rebalanced by a

batch algorithm

» Tries to match a given vehicle
distribution

» Minimum-cost congestion-free
rebalancing flows

» Computationally efficient (totally
unimodular)

minimize
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Case study: NYC

Legend

Manhattan road network

— Motorway

— Motorway link

— Trunk road

— Trunk road (link)

— Primary road

—— Primary road (link)

—— Secondary road

—— Secondary road (link)
Tertiary road

)
._//)J

\\ Tertiary road (ink)

I

Time [minutes]

o 24-hour simulation
e NYC taxi data; 480000 customers
e 3000 vehicles

Medium congestion: road capacity reduced by 75%
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—xperimental results
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A BCMP gueuing network mode

for congested AMO

D systems

A\ (2:9)
V%

Y e &7 e

Server

Infinite
Server

—

Network flow model is equivalent to a queuing-
theoretical model for systems with high availability

[lglesias, Rossi, Zhang and Pavone, 2016, 2017]
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PART II

AMoD SYSTEMS AND. THE POWER NETWORK
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28

1 he electric power network

® \Vell-regulated market run by
Independent System Operator

® Economic dispatch:
® Minimize cost of generation

® Satisfy generation, transmission,
and reliability constraints

® | ocational Marginal Pricing

® Distribution network

Legend
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¢ 0
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AMOoD and the power network

Controls: e. rices, ener eneratlon chedule
9. prices, 9v9 S S Power network

Charging demand / / > Electricity prices

Energy storage Energy provision

Transportatlon network

>
Controls: e.g. vehicle routes, charging schedules

Goal: socially optimal control policy for the
AMoD system and the power network
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AssumMptions

® Cooperation between the transportation system operator
and the power network’s independent system operator

® Road network: network flow model
® Power transmission network: DC model

® Power distribution network: thermal constraints only

® [ransportation system buys/sells electricity at LMP rate

30



Increasing charge level

Augmented ANMoD network
flow model

Transportation network Power network
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~low puNaling

Bundle flows with same destination

O((IVRI"T)(|€R| + |S])CT)

0(10') variables

~—— O(Val(1€x] + IS)CT)

O(107) variables

Flow decomposition algorithm

Theorem: flow bundling is lossless

33



Case study: Dallas-For

Road network Trips EV fiset
25 nodes 10 hours 150,000 EVs
173 road links 6250 O-D-T pairs

30 charge levels 400,000 customers

-

V\ortn

Power network
282 generators
2007 buses

2481 transmission lines
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—xperimental results

Uncoord. P-AMoD Baseline

— — — > $100
$95
- $90
- $85
- $80)
$75
9a.m. 930a.m. 10a.m. 10:30 a.m. 11 a.m. 11:30 a.m. 12 p.m. < 870
: No cars P-AMoD Uncoordinated
o Avg. passenger travel time - ~ 1h1émi1s | 1h15miis
o Tot.energy demand [GWh]| 517.498 . 520.541 | = 520.979
________________ Tot. electricity expenditure [k$]| 39,604.71 | 389,264.84 |  39,629.50
__________________________________________________ w.rt. no cars [k$] - - -339.87 | +24.79
______ Avg. power price in DEW [$/MWh]|  78.68 75.79 77.47
TSO tot. elec. expenditure [k$] - 227.98 296.82 35




—xperimental results

. -.' . -., B -.’

Uncoord. P-AMoD Baseline

9a.m. 930a.m. 10a.m. 10:30a.m. 11 a.m. 11:30 a.m. 12 p.m.

Coordination does not affect passenger travel times

Coordination reduces the total price of electricity w.r.t. baseline, despite extra
demand!

TSO: 23.5% lower electricity bill ($35M/year)

Local power network customers: 2.2% lower electricity bill ($122M/year)
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Self-interested actors

Why would a self-interested transportation system

operator (TSO) optimize for social welfare”

-

\_

Theorem: the social optimum is a Nash equilibrium

For TSO, optimal charging schedule is the best response to given
electricity prices (and vice versa).

~

J

-

Theorem: the equilibrium can be computed
without sharing private information

~

TS0 and ISO can compute the optimum with a dual decomposition algorithm.

Only public information (price of electricity and charging schedule) is shared.

37



A real-time P-ANMoD algorithm

® Assumption: customer-carrying  \7CHEAT
vehicles always follow shortest =7
route; no charging when |
customers on board

past future

predicted state z(t + 7|t)

® Suboptimal, but fast (1h— 1m) /\/—

/‘—/—/? prediét_ed— control u(t + 7lt)

® Receding-horizon .| eppliedeontrol
. . t t+90 t+71 t+ T
implementation

predicted state x(t + 0 + 7|t + §)

//Q; predicted control u( + & + 7|t + )

applied control

® [ractional output iIs sampled

t+6t+20 it e+T
38



—xperimental results

Avg. charge level

= & > 66%
iy A A

A A - 40%

A |
A
A o A & i
A A 0%
_ Stationary EVs
S A A Traveling EVs

A Charging EVs
v Discharging EVs

10:50 a.m.

TSO: 13.9% lower electricity bill ($16M/year)
Total electricity expenditure reduced by 75M/year w.r.t. greedy

Local power network customers: 0.88% lower electricity bill .



Conclusions

AMoD systems do not increase congestion if properly routed

e Capacitated network flow model with theoretical guarantees

* Model-predictive control algorithm

* 22% reduction in customer wait times compared to baseline algorithm (NYC)
AMoD systems can act as mobile storage units in the power network

e Joint model for AMoD systems and power network

* Control algorithm: efficient socially optimal solution with bundling

e Socially optimal solution is a Nash equilibrium, can be computed with no private
information

e Cooperation reduces in 23% lower electricity price for TSO, $120M in savings for
power network customers (DFW)

40



—uture researcn direct

ONS

® Customer demand prediction
® Stochastic control of AMoD systems

® How should AMoD systems interact with public
transportation”

® Wil AMoD systems foster adoption of renewable energy
sources’?

® \Vhat will the effect of AMoD systems on pollution be”

41
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\Vore results on
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~-AM

Price paid by the TSO
coordinated: 227977.072133
uncoordinated: 296817.428591
Unit price paid by the TSO
coordinated: 7491.27746558
uncoordinated: 8526.40186212
Price paid by all
ISO only: 39604707.8459
coordinated: 39264836.8294
uncoordinated: 39629497.7003
Price paid by all per 100 KW
ISO only: 7653.10996073
coordinated: 7543.07587502
uncoordinated: 7606.73059846
Price paid by everyone else
ISO only: 39604707.8459
coordinated: 39036859.7572
uncoordinated: 39332680.2717
Price per hundred KW paid by everyone else
ISO only: 7653.10996073
coordinated: 7543.3804841
uncoordinated: 7600.54406513

Cost of generation
ISO only: 40529884.5782
coordinated: 40756002.7821
uncoordinated: 40917155.1849
Cost of generation per hundred KW
ISO only: 7831.88868807
coordinated: 7829.54027502
uncoordinated: 7853.89153051

Price paid by all in Dallas
ISO only: 12832491.2268
coordinated: 12591742.8793

D Tull results

uncoordinated: 12905202.0542
Price per hundred KW paid by all in Dallas
ISO only: 7868.57561461
coordinated: 7579.51783894
uncoordinated: 7747.77901222
Price paid by everyone else in Dallas
ISO only: 12832491.2268
coordinated: 12363765.8072
uncoordinated: 12608384.6256
Price per hundred KW paid by everyone else in Dallas
ISO only: 7868.57561461
coordinated: 7581.16443766
uncoordinated: 7731.15882576
Price paid by everyone else NOT in Dallas
ISO only: 26772216.6191
coordinated: 26673093.95
uncoordinated: 26724295.6461
Price per hundred KW paid by everyone else NOT in Dallas
ISO only: 7553.96209363
coordinated: 7525.99396176
uncoordinated: 7540.44086681
Price paid by all at charging nodes
ISO only: 2243271.04358
coordinated: 2390693.73131
uncoordinated: 2501941.65175
Price per hundred KW paid by all at charging nodes
ISO only: 7862.43259969
coordinated: 7571.53715428
uncoordinated: 7815.47304232
Price paid by everyone else at charging nodes
ISO only: 2243271.04358
coordinated: 2162716.65918
uncoordinated: 2205124.22316
Price per 100 KW paid by everyone else at charging nodes
ISO only: 7862.43259969
coordinated: 7580.09782801
uncoordinated: 7728.73194622

https://phobos.stanford.edu:8899/notebooks/AMoD-power/atx/DFW_scenario_prep_Federico.ipynb
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Dual decomposition algorithm

Algorithm 1 Dual decomposition distributed algorithm for the P-AMoD prob-
lem

k«— 1
ISO sets ngg — dual solution to Economic Dispatch problem with {d;} =

{di .}

repeat

ISO informs TSO of )\Ieg’g
TSO sets {fk Aok Abeoutk NEY « golution to VRCP Problem with

Pvow) = A0
ISO sets {6%,p*} < solution to Lagrangian relaxation of Economic Dis-
patch Problem
TSO informs ISO of proposed charging schedule f~ .
ISO updates ng’gﬂ — ?(Sl’o + o frso (fF, 0%, p%)
k—k+1
until A5y ™ — Aigo

IN
)
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Number of vehicles and passengers

—leet activity;
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Sensitivity to node-symmetry

Table 1: Customer travel times with and without rebalancing for different levels

of network asymmetry.
Average travel time |[s]

Cap. reduction Without reb. With reb. Travel time increase

0% 58.00 58.67 1.16 %
10% 58.12 59.15 1.76 %
20% 58.49 59.67 2.02 %
307 59.26 60.56 2.20 %
40% 60.65 61.78 1.86 %
50% 63.66 64.55 1.40 %
60% 72.04 72.13 0.12 %
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seceding-horizon
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