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Self-driving vehicles

2005 2017

https://
www.youtube.com

/watch?
v=6tA_VvHP0-s



Self-driving vehicles
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Productivity
$1.315T

Carsharing
$402B

Health
$15B

Congestion
$160B

Safety (Societal harm)
$594B

Safety (Economic cost)
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4 [Spieser, Treleaven, Zhang, Frazzoli, Morton, Pavone, Road Vehicle Automation, 2014]

“Potential savings of… 
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Self-driving vehicles



Fleets of self-driving vehicles

5

1 [Blincoe et al., NHTSA Report, 2015] 
2 [Schrank et al., Texas A&M Transportation Institute, 2015] 
3 [Levy et al., Environmental Health, 2010] 
4 [Spieser, Treleaven, Zhang, Frazzoli, Morton, Pavone, Road Vehicle Automation, 2014]

lifetime productivity) = $594B

Productivity
$1.315T

Carsharing
$402B

Health
$15B

Congestion
$160B

Safety (Societal harm)
$594B

Safety (Economic cost)
$242B

1

1

2

3

4

4



Autonomous Mobility-on-Demand

+
Vehicle	Autonomy Car	Sharing
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Impact on the built environment?



AMoD systems and 
the built environment

• Congestion 
“… the additional empty repositioning trips made by [shared autonomous vehicles] increased 
congestion and travel times and a significant number of [shared autonomous vehicles] were needed 
to provide effective service.”  
[Levin et al. 2016] 

“Robocars present one risk of increased congestion, because they allow vehicles to move while 
empty. … Empty vehicles can increase congestion.” 
 – Brad Templeton 

• The electric power network 
“Depending on the scenario, price may increase by only 1.2–2.7 percent (in WECC – RMP/ANM) or, 
for evening recharging at 6 kW, by as much as 141 percent (in FRCC), 196 percent (in WECC-CA) 
and 297 percent (in SERC). In contrast to what was suggested by other research, the model predicts 
increases in electricity prices for almost all regions.” 
[Hadley and Tsvetkova 2009] 

“V2G could stabilize large-scale (one-half of US electricity) wind power with 3% of the fleet 
dedicated to regulation for wind, plus 8–38% of the fleet providing operating reserves or storage for 
wind.” 
[Kempton and Tomic 2005] 7



Problem statement

• Propose models that capture the the interaction between 
AMoD systems and the built environment, with particular 
attention to traffic congestion and the electric power network. 

• Propose control algorithms that optimize the performance of 
such AMoD systems. 

• Validate these algorithms with case studies with real-world 
data.
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In the literature

No interaction with the built environment
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Control of AMoD systems 

• Queueing-theoretical models [Zhang et al. 2014; Zhang et al. 2015; Calafiore et al. 2017] 

• Dynamic vehicle routing models [Psaraftis ’88; Berbeglia, Cordeau, Laporte ’10; Pavone 
’10; Pavone et al. 2011; Treleaven, Pavone, Frazzoli ’13; Spieser et al. ’14] 

• Fluidic models [Pavone et al. 2012; Levin 2017]
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In the literature

Traffic congestion 

• Traffic modeling:  
• Static models [Wardrop 1952] 

• Simulation models [Treiber, Hennecke, Helbing, 2000; Maciejevski 2017; Fagnant et al. 2014, 
2016] 

• Queueing models [Osorio, Bierlaire, 2009] 

• Dynamic Traffic Assignment (DTA) and System-Optimal DTA 
[Janson 1991] 

No optimization

No rebalancing
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In the literature
EVs and the power network 

• Scheduling charging [Rotering and Ilic 2011; Turitsyn 
et al. 2010; Tushar et al. 2012] 

• Location of charging stations [Goeke and 
Schneider 2015; Pourazarm et al. 2016] 

• Macroeconomic effect of EVs [Hadley and 
Tsvetkova 2009] 

• Game-theoretical models [Sioshansi 2012; Wang 
et al. 2010] 

• Joint routing, charging, and economic 
dispatch [Alizadeh et al. 2016; Khodayar et al. 2013]

No feedback

No spatial 
model

Private vehicles



Contribution
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Other contributions 
• Randomised algorithms for efficient routing in AMoD systems 

• Model-predictive control of AMoD fleets with charging constraints [Zhang, Rossi and Pavone 2016b, ICRA] 

• BMPC queuing-theoretical models of AMoD systems [Iglesias et al. 2016 WAFR; Iglesias et al. 2018, 
submitted to the International Journal of Robotics Research] 

• Data-driven control of AMoD systems with LSTM estimation of customer demand [Iglesias et al. 2018, 
ICRA]

• Will AMoD systems increase urban congestion? 

Not if properly routed [Zhang*, Rossi* and Pavone 2016a, Robotics: 
Science and Systems; Rossi et al. 2017, Autonomous Robots, in press.] 

• Will fleets of electric vehicles help control the power network? 

Yes, if properly coordinated [Rossi et al., in preparation for RSS 2018]



Network flow model
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TODO: proper citations

Expectation of a stochastic process 

Flow decomposition and sampling

• No stochasticity  

• Continuum approximation

• Highly scalable (LP) 

• Very expressive

TODO ADD BULLET 
POINT ON 
STOCHASTICITY 
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PART I 

AMoD SYSTEMS AND CONGESTION



Our approach: assumptions

Customer demand is time-
invariant 

The road network is node-
symmetric 

Congestion is a threshold 
phenomenon 
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Customers and roads
• Transportation requests: origin, 

destination, rate of demand 
(customers/minute) 

• Trips: 

‣ Customer trips service 
transportation requests 

‣ Rebalancing trips realign 
vehicles with requests 

• Road network model: 

‣ Nodes: intersections 

‣ Directed, capacitated edges: 
roads

16



Road network and flows

• Customer flows

• Rebalancing flows 

• Graph cut 

‣ Edges separating   
and  

‣ Cut capacity 

pS, S̄q

S
S̄

C
out

, C
in
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Road network and flows

• Customer flows 

• Rebalancing flows 

• Graph cut

‣ Edges separating   
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Linear model
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Theoretical results

Node-symmetric road graph

Feasible customer flows

Feasible rebalancing 
flows

Sufficient condition for feasibility of rebalancing

1. In a node-symmetric road network rebalancing 
does not increase congestion 

2. If goal is to maximize customer satisfaction, 
customer flows and rebalancing flows are 
decoupled and can be computed separately
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Are road networks symmetric?
Urban center Avg. frac. capacity 

disparity Std. dev.

Chicago, IL 1.2972·10-4 1.003·10-4

New York, NY 1.6556·10-4 1.304·10-4

Colorado Springs, 
CO 3.1772·10-4 2.308·10-4

Los Angeles, CA 0.9233·10-4 0.676·10-4

Mobile, AL 1.9368·10-4 1.452·10-4

Portland, OR 1.0769·10-4 0.778·10-4

Very high degree of node-symmetry 
(even with many one-way streets)
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minimize

fRp¨,¨q,
tdsiu,tdtju

ÿ

pu,vqPE
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ÿ

iPSR

Cdsi `
ÿ

iPTR

Cdti

subject to

ÿ

uPV
fRpu, vq ` 1vPSRpvevptq ´ vdvptq ´ dsvq

“
ÿ

wPV
fRpv, wq ` 1vPTRpvdvptq ´ vevptq ´ dtvq,

@v P V
fRpu, vq § cRpu, vq, @pu, vq P E ,
fRpu, vq P N, @pu, vq P E ,
dsi, dtj P N, @i P SR, j P TR.

A real-time congestion-aware 
rebalancing algorithm

• Customers are routed on fastest 
route as soon as a vehicle is 
available 

• Empty vehicles are rebalanced by a 
batch algorithm 

‣ Tries to match a given vehicle 
distribution 

‣ Minimum-cost congestion-free 
rebalancing flows 

‣ Computationally efficient (totally 
unimodular)
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Case study: NYC
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• 24-hour simulation 
• NYC taxi data: 480000 customers 
• 8000 vehicles

Wait time

Service time



Experimental results
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A BCMP queuing network model 
for congested AMoD systems

Network flow model is equivalent to a queuing-
theoretical model for systems with high availability

[Iglesias, Rossi, Zhang and Pavone, 2016, 2017]

Single 
Server

Infinite 
Server
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PART II 

AMoD SYSTEMS AND THE POWER NETWORK



The electric power network

• Well-regulated market run by 
Independent System Operator 

• Economic dispatch: 

• Minimize cost of generation 

• Satisfy generation, transmission, 
and reliability constraints 

• Locational Marginal Pricing 

• Distribution network

28



AMoD and the power network
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Charging demand
Energy storage

Electricity prices
Energy provision

Power network

Transportation network

Controls: e.g. prices, energy generation schedules

Controls: e.g. vehicle routes, charging schedules

Goal: socially optimal control policy for the 
AMoD system and the power network



Assumptions

• Cooperation between the transportation system operator 
and the power network’s independent system operator 

• Road network: network flow model 

• Power transmission network: DC model 

• Power distribution network: thermal constraints only 

• Transportation system buys/sells electricity at LMP rate

30
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Augmented AMoD network 
flow model
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Linear model

32
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Flow bundling
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Bundle flows with same destination

Flow decomposition algorithm

Theorem: flow bundling is lossless

Op|VR|p|ER| ` |S|qCT qOpp|VR|2T qp|ER| ` |S|qCT q

variablesOp107qOp1010q variables



Case study: Dallas-Fort Worth

Road network 
25 nodes 

173 road links 
30 charge levels

Power network 
282 generators 

2007 buses 
2481 transmission lines

34

Trips 
10 hours 

6250 O-D-T pairs 
400,000 customers

EV fleet 
150,000 EVs 



Experimental results
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No cars P-AMoD Uncoordinated
Avg. passenger travel time - 1h15m11s 1h15m11s
Tot. energy demand [GWh] 517.498 520.541 520.979  

Tot. electricity expenditure [k$] 39,604.71 39,264.84 39,629.50 
w.r.t. no cars [k$] - -339.87 +24.79 

Avg. power price in DFW [$/MWh] 78.68 75.79 77.47 
TSO tot. elec. expenditure [k$] - 227.98 296.82 



Experimental results
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Coordination does not affect passenger travel times 
Coordination reduces the total price of electricity w.r.t. baseline, despite extra 

demand! 
TSO: 23.5% lower electricity bill ($35M/year) 
Local power network customers: 2.2% lower electricity bill ($122M/year) 



Self-interested actors
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Why would a self-interested transportation system 
operator (TSO) optimize for social welfare?

Theorem: the social optimum is a Nash equilibrium
For TSO, optimal charging schedule is the best response to given 

electricity prices (and vice versa).

Theorem: the equilibrium can be computed 
without sharing private information

TSO and ISO can compute the optimum with a dual decomposition algorithm. 
Only public information (price of electricity and charging schedule) is shared.



A real-time P-AMoD algorithm

• Assumption: customer-carrying 
vehicles always follow shortest 
route; no charging when 
customers on board 

• Suboptimal, but fast (1h    1m) 

• Receding-horizon 
implementation 

• Fractional output is sampled

38

past future

predicted state

predicted control

predicted control

applied control

predicted state

applied control

Ñ



Experimental results
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TSO: 13.9% lower electricity bill ($16M/year) 
Total electricity expenditure reduced by 75M/year w.r.t. greedy 
Local power network customers: 0.88% lower electricity bill 

Stationary EVs 
Traveling EVs 
Charging EVs 
Discharging EVs

Avg. charge level
• 66%

20%

40%

0%



Conclusions
AMoD systems do not increase congestion if properly routed 

• Capacitated network flow model with theoretical guarantees


• Model-predictive control algorithm


• 22% reduction in customer wait times compared to baseline algorithm (NYC)


AMoD systems can act as mobile storage units in the power network 

• Joint model for AMoD systems and power network


• Control algorithm: efficient socially optimal solution with bundling


• Socially optimal solution is a Nash equilibrium, can be computed with no private 
information


• Cooperation reduces in 23% lower electricity price for TSO, $120M in savings for 
power network customers (DFW)

40



Future research directions

41

• Customer demand prediction 

• Stochastic control of AMoD systems 

• How should AMoD systems interact with public 
transportation? 

• Will AMoD systems foster adoption of renewable energy 
sources? 

• What will the effect of AMoD systems on pollution be?
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[P érez et al., 2010] P érez, J., Seco, F., Milan és, V., Jim énez, A., D ı́az, J. 
C., and De Pedro, T. (2010). An RFID-based intelligent vehicle speed 
controller using active traffic signals. Sensors, 10(6):5872–5887. 

[Pourazarm et al., 2016] Pourazarm, S., Cassandras, C. G., and Wang, T. 
(2016). Optimal routing and charging of energy-limited vehicles in traffic 
networks. Int. Journal of Robust and Nonlinear Control, 26(6):1325–1350. 

[Raghavan and Tompson, 1987] Raghavan, P. and Tompson, C. D. (1987). 
Randomized rounding: A technique for provably good algorithms and 

algorithmic proofs. Combinatorica, 7(4):365–374. 



References

49

[Rossi et al., 2017a] Rossi, F., Iglesias, R., Zhang, R., and Pavone, M. (2017a). 
Congestion- aware randomized routing in autonomous mobility-on-demand 
systems. Extended version available at https://asl.stanford.edu/wp-
content/papercite-data/pdf/Rossi.Iglesias. Zhang.Pavone.CDC17.pdf. 

[Rossi et al., 2017b] Rossi, F., Zhang, R., Hindy, Y., and Pavone, M. (2017b). 
Routing autonomous vehicles in congested transportation networks: structural 
properties and coordination algorithms. Autonomous Robots. Submitted. 

[Rotering and Ilic, 2011] Rotering, N. and Ilic, M. (2011). Optimal charge 
control of plug-in hy- brid electric vehicles in deregulated electricity markets. 
IEEE Transactions on Power Systems, 26(3):1021–1029. 

[Seow et al., 2010] Seow, K. T., Dang, N. H., and Lee, D. H. (2010). A 
collaborative multiagent taxi-dispatch system. IEEE Transactions on 
Automation Sciences and Engineering, 7(3):607–616. 

[Sioshansi, 2012] Sioshansi, R. (2012). OR Forum—modeling the impacts of 
electricity tariffs on plug-in hybrid electric vehicle charging, costs, and 
emissions. Operations Research, 60(3):506– 516. 

[Smith et al., 2013] Smith, S. L., Pavone, M., Schwager, M., Frazzoli, E., and 
Rus, D. (2013). Rebal- ancing the rebalancers: Optimally routing vehicles and 
drivers in Mobility-on-Demand systems. In American Control Conference. 

[Spieser et al., 2014] Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., 
Morton, D., and Pavone, M. (2014). Toward a systematic approach to the 
design and evaluation of Autonomous Mobility- on-Demand systems: A case 
study in Singapore. In Road Vehicle Automation. Springer. 

[Srinivasan, 1999] Srinivasan, A. (1999). A survey of the role of 
multicommodity flow and random- ization in network design and routing. In 
Randomization Methods in Algorithm Design. 

[Stott et al., 2009] Stott, B., Jardim, J., and Alsa ç, O. (2009). DC power flow 
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Price paid by the TSO
   coordinated:  227977.072133
 uncoordinated:  296817.428591
Unit price paid by the TSO
   coordinated:  7491.27746558
 uncoordinated:  8526.40186212
Price paid by all
      ISO only:  39604707.8459
   coordinated:  39264836.8294
 uncoordinated:  39629497.7003
Price paid by all per 100 KW
      ISO only:  7653.10996073
   coordinated:  7543.07587502
 uncoordinated:  7606.73059846
Price paid by everyone else
      ISO only:  39604707.8459
   coordinated:  39036859.7572
 uncoordinated:  39332680.2717
Price per hundred KW paid by everyone else
      ISO only:  7653.10996073
   coordinated:  7543.3804841
 uncoordinated:  7600.54406513

Cost of generation
     ISO only:  40529884.5782 
  coordinated:  40756002.7821 
uncoordinated:  40917155.1849
Cost of generation per hundred KW 
     ISO only:  7831.88868807 
  coordinated:  7829.54027502 
uncoordinated:  7853.89153051

Price paid by all in Dallas
      ISO only:  12832491.2268
   coordinated:  12591742.8793

 uncoordinated:  12905202.0542
Price per hundred KW paid by all in Dallas
      ISO only:  7868.57561461
   coordinated:  7579.51783894
 uncoordinated:  7747.77901222
Price paid by everyone else in Dallas
      ISO only:  12832491.2268
   coordinated:  12363765.8072
 uncoordinated:  12608384.6256
Price per hundred KW paid by everyone else in Dallas
      ISO only:  7868.57561461
   coordinated:  7581.16443766
 uncoordinated:  7731.15882576
Price paid by everyone else NOT in Dallas
      ISO only:  26772216.6191
   coordinated:  26673093.95
 uncoordinated:  26724295.6461
Price per hundred KW paid by everyone else NOT in Dallas
      ISO only:  7553.96209363
   coordinated:  7525.99396176
 uncoordinated:  7540.44086681
Price paid by all at charging nodes
      ISO only:  2243271.04358
   coordinated:  2390693.73131
 uncoordinated:  2501941.65175
Price per hundred KW paid by all at charging nodes
      ISO only:  7862.43259969
   coordinated:  7571.53715428
 uncoordinated:  7815.47304232
Price paid by everyone else at charging nodes
      ISO only:  2243271.04358
   coordinated:  2162716.65918
 uncoordinated:  2205124.22316
Price per 100 KW paid by everyone else at charging nodes
      ISO only:  7862.43259969
   coordinated:  7580.09782801
 uncoordinated:  7728.73194622

https://phobos.stanford.edu:8899/notebooks/AMoD-power/atx/DFW_scenario_prep_Federico.ipynb

P-AMoD: full results

https://phobos.stanford.edu:8899/notebooks/AMoD-power/atx/DFW_scenario_prep_Federico.ipynb
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Algorithm 1 Dual decomposition distributed algorithm for the P-AMoD prob-
lem

k – 1
ISO sets �eq,k

ISO – dual solution to Economic Dispatch problem with tdlu “
tdl,eu.
repeat

ISO informs TSO of �eq,k
ISO

TSO sets tfk
m,�c,in,k

m ,�t,c,out,k
m , Nk

F u –solution to VRCP Problem with

ppv,wq “ �eq,k
ISO

ISO sets t✓k, pku – solution to Lagrangian relaxation of Economic Dis-
patch Problem

TSO informs ISO of proposed charging schedule fk
m.

ISO updates �eq,k`1
ISO – �eq,k

ISO ` ↵kf
eq
ISOpfk

m, ✓k, pkq
k – k ` 1

until }�eq,k`1
ISO ´ �eq,k

ISO } § "
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Sensitivity to node-symmetry

58

Table 1: Customer travel times with and without rebalancing for di↵erent levels

of network asymmetry.

Average travel time [s]

Cap. reduction Without reb. With reb. Travel time increase

0% 58.00 58.67 1.16 %

10% 58.12 59.15 1.76 %

20% 58.49 59.67 2.02 %

30% 59.26 60.56 2.20 %

40% 60.65 61.78 1.86 %

50% 63.66 64.55 1.40 %

60% 72.04 72.13 0.12 %
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Full P-AMoD results
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Receding-horizon P-AMoD
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