
Exploiting Locality and Structure for Distributed Optimization in
Multi-Agent Systems

Robin Brown1, Federico Rossi2, Kiril Solovey3, Michael T. Wolf2, and Marco Pavone3

Abstract— A number of prototypical optimization problems
in multi-agent systems (e.g. task allocation and network load-
sharing) exhibit a highly local structure: that is, each agent’s
decision variables are only directly coupled to few other agent’s
variables through the objective function or the constraints.
Nevertheless, existing algorithms for distributed optimization
generally do not exploit the locality structure of the problem,
requiring all agents to compute or exchange the full set of
decision variables. In this paper, we develop a rigorous notion
of “locality” that relates the structural properties of a linearly-
constrained convex optimization problem (in particular, the
sparsity structure of the constraint matrix and the objective
function) to the amount of information that agents should
exchange to compute an arbitrarily high-quality approximation
to the problem from a cold-start. We leverage the notion of
locality to develop a locality-aware distributed optimization
algorithm, and we show that, for problems where individual
agents only require to know a small portion of the opti-
mal solution, the algorithm requires very limited inter-agent
communication. Numerical results show that the convergence
rate of our algorithm is directly explained by the locality
parameter proposed, and that the proposed theoretical bounds
are remarkably tight.

I. INTRODUCTION

Many problems in multi-agent control are naturally posed
as a large-scale optimization problem, where knowledge of
the problem is distributed among agents, and the collec-
tive actions of the network are summarized by a global
decision variable. Concerns about communication overhead
and privacy in such settings have motivated the need for
distributed solution algorithms—chiefly those that preclude
explicitly gathering all of the problem data in one location.
This is strikingly similar to a prominent setting in the
literature on distributed optimization where knowledge of the
objective function is distributed, i.e., can be expressed as the
sum of privately known functions, and agents must reach
a consensus on the optimal decision vector despite limited
inter-agent communication. We refer the reader to [1] for a
recent survey on distributed optimization.

For many settings, this problem formulation is appropriate,
such at rendezvous or flocking, where all agents’ actions
depend of the global decision variables (meeting time and
location for the former, and speed and heading for the latter).
However, when the global decision variable represents a
concatenation of individual actions, the network can still
act optimally without ever coming to a consensus. Take,
for example, a centralized solution where the problem data

1R. Brown is with the Institute for Computational &
Mathematical Engineering, Stanford University, Stanford, CA, 94305,
rabrown1@stanford.edu.

2 K. Solovey and M. Pavone are with the Department of Aero-
nautics & Astronautics, Stanford University, Stanford, CA, 94305,
{kirilsol,pavone}@stanford.edu.

3 F. Rossi, and M. T. Wolf are with the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, Pasadena, CA, 91109, {federico.rossi,
michael.t.wolf}@jpl.nasa.gov.

is collected by a single computation node, who solves the
problem, and passes the appropriate solution components to
each agent.

Many existing distributed optimization algorithms leverage
consensus as a core building block. In general, many of
them can be abstracted as the interleaving of descent steps,
to drive the solution to the optimum, and averaging of
information from neighbors to enforce consistency. The main
features differentiating these algorithms from each other
are the centralized algorithm from which they are derived,
and details regarding the communication structure such as
synchronous or asynchronous, and directed or undirected
communication links, with the broad overarching categories
being consensus-based (sub)gradient ([2], [3], [4], [5], [6]),
(sub)gradient push ([7], [8]), dual-averaging ([9], [10]), and
distributed second-order schemes ([11], [12]).

Our main objective of this paper is to show that under
reasonable assumptions about problem instances for multi-
agent systems, the large communication overhead incurred
by such algorithms is unnecessary. Specifically, we will
take advantage of sparsity structure in the constraints and
objective to develop a notion of “locality”, namely the
property that solution components can be computed with
high accuracy without full knowledge of the problem. Under
such assumptions, we will illustrate that an algorithm that
restricts information exchange to “where it matters most” is
significantly more efficient than those which rely on eventu-
ally disseminating information through the entire network.

Our approach builds on the work of Rebschini and
Tatikonda [13], who introduced a notion of correlation in
purely-deterministic settings as a structural property of opti-
mization problems. The authors in [13] characterize the “lo-
cality” of network-flow problems, and show that the notion of
locality can be applied to develop computationally-efficient
algorithms for “warm-start” optimization, i.e., re-optimizing
a problem when the problem is perturbed. Moallemi and Van
Roy [14] have also explored similar notions of correlation,
but solely as a tool to prove convergence of min-sum message
passing algorithm for unconstrained convex optimization. To
the best of our knowledge, [13] is the only prior work to
advocate for a general theory of locality in the context of
multi-agent systems.

Statement of Contribution: The contributions of this
paper are twofold. First, we formalize a notion of “locality”
in linearly constrained convex optimization problems, and
devise a rigorous metric that captures the locality of an
optimization problem and explicitly takes into account the
problem structure. Second, we leverage the locality met-
rics proposed to design a novel distributed approximation
algorithm that exploits locality to drastically reduce the
communication needed to approximate the optimal solution
over existing “locality-agnostic” distributed algorithms.



Organization: The paper is organized as follows. In
Section II we introduce our notation and terminology, and
formally provide the problem statement. In Section III, we
motivate and propose a rigorous metric of the “locality”
of an optimization problem. In Section IV we show that
locality can be exploited to design communication-efficient
distributed optimization algorithms. In Section V, we validate
our theoretical results on a network load-sharing example.
Section VI contains concluding remarks and highlights future
directions. The extended version of this paper [15] contains
additional discussion and numerical results and a full proof
of all theorems.

II. PRELIMINARIES

A. Notation
We use [N] := {1, ...,N} to denote the 1−N index set,

and ei denotes the canonical ith basis vector i.e., the vector
with 1 in position i and zero elsewhere, where the size of
the vector will be clear from context. For a given matrix
A, Ai j denotes the element in the ith row and jth column
of A. Similarly let Ai,∗ and A∗, j denote the ith row and jth
column of A respectively. Let AT be the transpose, and A−1

be the inverse of matrix A. Given subsets I ⊆M, J ⊆ N, let
AI,J ∈ R|I|×|J| denote the submatrix of A corresponding to
the rows and columns of A indexed by I and J, respectively.
Similarly, let A−I,−J denote the submatrix of A obtained by
removing rows I and columns J. We define a partition of
a set C to be a collection of subsets Ci, i = 1, ..,k such that⋃

i=1,..,k Ci =C and Ci∩C j = /0 for all i 6= j.
We define an undirected graph G = (V,E) by its vertex set

V and edge set E, where elements (u,v) ∈ E are unordered
tuples with u,v ∈V . We let NG(v) := {u ∈V |(u,v) ∈ E} be
the neighbors of node v. For a subset S⊆V , we let NG(S) =⋃

v∈S NG(v). Wedefine the graph distance dG(u,v) to be the
length of the shortest path between vertices u and v in graph
G.

B. Problem Setup
We consider a network of N agents collectively solving the

following linearly constrained optimization problem
minimize
x ∈ RN

f (x)

subject to Ax = b
(1)

where knowledge of the constraints is distributed, and the
decision vector represents a concatenation of the decisions
of individual agents. Specifically, we assume that f is known
by all of the agents, A∗ j is initially known by agent j only,
and agent j knows bi if Ai j 6= 0. As a departure from a large
body of the existing literature on distributed optimization,
we allow any solution where each agent j knows x∗j—that
is, we do not require every agent to know the entire optimal
decision variable. With some abuse of notation, we conflate
each agent with its associated primal variable.

As a motivating example, consider a scenario where a
fleet of agents need to collectively complete tasks at various
locations, while minimizing the cost of completing such
tasks. In this setting, the constraints ensure completion of the
tasks, while the entries of the constraint matrix may encode
the portion of a task that an agent can complete, or efficiency
when completing tasks, thus, constituting private knowledge.

While, in this paper, each agent is only associated with
a scalar variable for illustrative purposes, one can readily

extend the results in this paper to the setting where each
agent is associated with a vector. Additionally, the case where
multiple agents’ actions depend on shared variables can be
addressed by creating local copies of those variables and
enforcing consistency between agents who share that variable
through a coupling constraint.

Additionally, we assume that A ∈ RM×N is full rank, and
the function f : RN → R is strongly convex, and twice
continuously differentiable. In problem 1, let V (p) = [N]
denote the set of primal variables, V (d) = [M] the set of
dual variables, and S j = {i ∈V (p)|A ji 6= 0} the set of agents
participating in the jth constraint. Throughout this paper, we
fix the objective function f and the constraint matrix A, and
write x∗(b) as a function of the constraint vector, b.

At this point, we make no assumptions on the commu-
nication structure of the network. In the literature on dis-
tributed optimization, the underlying communication graph
is typically assumed to be fixed, however, in practice it
can be modulated, and should be co-designed with the
solution algorithm. Our analysis of locality gives a method of
quantifying the importance of problem information to solu-
tion components, and assessing the value of communicating
certain pieces of information.

III. CLOSED-FORM LOCALITY METRIC

In this section, we propose a rigorous metric of the “lo-
cality” of an optimization problem. Specifically, in Section
III-A, we provide a method to track the cascading effects
from perturbations of the constraint vector, b, and quantify
its effect on the optimal solution. Then in III-B, we provide
conditions under which this cascading effect is damped as
it propagates; the damping allows to solve for components
of the optimal solution with only partial information of
the problem—the rate of damping naturally characterizes
the trade-off between solution accuracy and the quantity
of problem information used. Our method quantifies the
structural amount of information that each computation node
needs to receive from other nodes in the network to yield an
approximate solution with a certain accuracy. These results
are global—they hold true on the entire space of feasible
instances of problem 1, not just in a neighborhood of the
optimal solution. This distinction will later (in Section IV)
allow us apply these results to design distributed optimization
algorithms that can converge from a cold-start (i.e., with no
prior knowledge of a ”good” solution).

Our results for this section build on the analysis in [13] on
the sensitivity of optimal points to finite perturbations of the
constraint vector for linearly constrained convex optimization
problems. We first review the relevant results, and then
present our contribution.

Theorem III.1 (Sensitivity of Optimal Points - Theorem 1
of [13]). Let f : RN → R be strongly convex and twice
continuously differentiable, and A ∈ RM×N have full row
rank. For b ∈ Im(A), let Σ(x∗(b)) := ∇2 f (x∗(b))−1 . Then
AΣ(x∗(b))AT is invertible, x∗(b) at all b ∈ Rm, and

dx∗(b)
db

= D(b) = Σ(x∗(b))AT (AΣ(x∗(b))AT )−1. (2)

The above theorem relates the gradient of the optimal
solution, x∗(b), to the constraint matrix and the objective
function. This result will be the building block for under-



standing, structurally, how the optimal solution depends on
problem information.

A. Sparsity of Multi-Agent Convex Optimization Problems

In many practical problems, both A and ∇2 f (x) are sparse
and highly structured. That is, agents only participate in a
small subset of the constraints, and the objective function is
only loosely coupled across agents. For example, constraints
might encode collision avoidance within a fleet of robots
where one robot has no chance of colliding with a robot
that is far away [16], or consumption of shared resources
where each individual resource may only be accessed by a
small fraction of the network, as is the case for transmission
link bandwidth in the setting of network utility maximization
[17]. Additionally, a common objective function is one where
the global cost function is simply the sum of individual
agents’ cost functions.

One might hope that such problems would be more
amenable to a distributed solutions compared to ones where
the constraints and objective are densely coupled among
agents. However, the cascading effects that one decision has
on the remainder of the network makes the analysis of such
problems challenging. We use the sensitivity expression in
Equation (2) to reason about this structural coupling, but
the terms (AΣ(x∗(b))AT )−1 and Σ(x∗(b)) = ∇2 f (x∗(b))−1

require careful treatment. Specifically, the inverse of sparse
matrices is not guaranteed to be sparse, and in fact, is
typically dense (corresponding to the aforementioned cas-
cading effects). While the structure of the original problem
is obfuscated when we take the inverses, (AΣ(x∗(b))AT )−1

and Σ(x∗(b)) = ∇2 f (x∗(b))−1, it can still be recovered by
exploiting the following key insights:

1) AΣ(x)AT can be expressed as (L(x)−1AT )T (L(x)−1AT ),
where L(x) is the Cholesky factorization of Σ(x).
Moreover, the sparsity pattern of L(x) can be char-
acterized in closed-form.

2) The columns of L(x)−1AT are solutions to sparse linear
systems. Explicitly,

L(x)× [L(x)−1AT ]∗i = [AT ]∗i.
3) Under the appropriate spectral conditions,

(AΣ(x∗(b))AT )−1 can be expressed as the Neumann
series ∑

∞
i=0(I−AΣ(x)AT )i.

We refer the reader to the Supplementary Material for
discussion on how to determine the sparsity patterns of
the Cholesky factorization and the solution of sparse linear
systems. 1 This will naturally give rise to a distance metric
between primal and dual variables, and will allow us to
identify conditions under which sensitivity of components
of the optimal solution decays as a function of distance to
perturbations in the constraint vector. This corresponds to the
notion that one constraint will not have an out-sized effect on
the remainder of the network. We now define several graphs
that will allow us to reason about the numerical structure of
the sensitivity expression using the sparsity patterns of the
terms composing the expression. For fixed x ∈D, define the
following undirected graphs:
• Gobj(x) = (V (p), Eobj(x)), with Eobj(x) =
{(i, j)|[∇2 f (x)]i j 6= 0}. Informally, Gobj(x) encodes

1We use the term “sparsity pattern” to refer to the pattern of non-zero
entries of a matrix.

direct links between primal variables through the
Hessian of the objective function.

• Geff(x) = (V (d), Eeff(x)), with Eeff =
{(i, j)|[AΣ(x)AT ]i j 6= 0}. Informally, Geff(x) encodes
direct links between dual variables, by tracing through
shared primal variables and the Hessian of the objective
function.

• Gopt = (V (p) ∪ V (d), Eopt(x)), with Eopt =

{(v(p)
j ,v(d)i )|Ai j 6= 0}. Informally, Gopt is the bipartite

graph showing the primal variables involved in each
constraint.

We define Gobj := (V (p),
⋃

x∈D Eobj(x)) and Geff :=
(V (d),

⋃
x∈D Eeff(x)) to eliminate dependence on the specific

value of x where these graphs are evaluated.
Using these graphs, the following theorem and corollary

will allow us to derive the sparsity pattern of the terms in
the previously mentioned Neumann series.

Theorem III.2 (Sparsity Structure of Matrix Powers). For
k ∈ Z+, neglecting numerical cancellation2,

supp((I−AΣ(x)AT )k) = {(i, j)|dGeff(x)(vi,v j)≤ k}
⊆ {(i, j)|dGeff(vi,v j)≤ k}.

The previous theorem establishes that the sparsity pattern
of a symmetric matrix to the kth power is determined by
the k-hop neighbors in the graph representing the sparsity
pattern of the original matrix. This allows us the characterize
the sparsity pattern of each term in the Neumann series
∑

∞
i=0(I − AΣ(x)AT )i. This, in turn, can be used to derive

the sparsity pattern when each term of the series is pre-
multiplied by Σ(x)AT . We define the set N

(d)
k (i) := {v ∈

V (d)|dGeff(v
(d)
i ,v)≤ k} to be the set of vertices of distance at

most k from vertex i in Geff

Corollary III.2.1 (Sparsity Structure of the Sensitivity Ex-
pression). For k ∈ Z+ and i ∈ [M]

supp
(

Σ(x)AT (I−AΣ(x)AT )k
)

ei

⊆NGobj(NGopt(N
(d)

k (i))). (3)

The proofs of Theorem III.2 and Corollary III.2.1
rely on combinatorially deducing the entries that must
be zero in the above expressions. The full proofs and
all subsequent proofs are included in the Supplemen-
tary Material. Intuitively, NGobj(NGopt(N

(d)
k (i))) represents

the components of
(
Σ(x)AT (I−AΣ(x)AT )k

)
ei that can be

nonzero based on combinatorial analysis of the terms of(
Σ(x)AT (I−AΣ(x)AT )k

)
ei. We will later consider a trun-

cated approximation of the sensitivity expression. The con-
sequence of Corollary III.2.1 is that we know which compo-
nents of the approximation are guaranteed to be zero i.e., are
invariant to locally supported perturbations in the constraint
vector.

Based on the previous theorem and its corollary, we
define a measure of distance between primal variables and
dual variables that characterizes the indirect path, through
coupling in the constraints and the objective function, by
which a perturbation in the constraint propagates to primal

2When characterizing the sparsity pattern of a matrix, “numerical cancel-
lation” refers to when entries that are zeroed out due to the exact values of
entries in the matrix, cannot be deduced to be zero from the combinatorial
structure of the matrix alone.



variables.
d(v(p)

i ,v(d)j ) := min{k|Nobj(Nopt(V
(d)
k (i)))}.

We also define the distance between sets of primal and dual
variables as

d(I,J) = min{d(v(p)
i ,v(d)j )|v(p)

i ∈ I,v(d)j ∈ J}.

B. Spectral Conditions for Locality
We are now in a position to define our metric of locality,

and provide conditions under which a problem exhibits
locality.

Definition III.1 (Exponential Locality). We say a linearly
constrained convex optimization problem is exponentially
local under distance metric d, with parameter λ if there
exists nonnegative λ < 1, a distance metric, d, between
primal and dual variables, and constant c, such that for all
subsets S⊆V (p) and b,∆ ∈ Im(A)

‖(x∗(b+∆)− x∗(b))S‖ ≤ c‖∆‖λ
d(S,supp(∆)) (4)

Intuitively, exponential locality is the condition that per-
turbations in the constraint vector result in perturbations in
the optimal solution that decay exponentially as a function
of distance between the solution components and the pertur-
bation.

The next theorem provides conditions for which an opti-
mization problem is exponentially local.

Theorem III.3 (Spectral Conditions for Exponential
Locality of Linearly Constrained Convex Optimization
Problems). A linearly constrained convex optimization
problem is exponentially local with parameter λ if
supx ρ(I − AΣ(x)AT ) = λ < 1, where ρ(M) denotes the
largest singular value of the matrix M.

Proof Sketch. Under the spectral conditions specified, we
can express (AΣ(x∗(b))AT )−1 as the Neumann series
∑

∞
i=0(I−AΣ(x)AT )k. We split the sensitivity expression
(x∗(b+∆)− x∗(b))S

=
d(S,supp(∆))−1

∑
i=0

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )kdθ

)
∆

+
∞

∑
i=d(S,supp(∆))

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )kdθ

)
∆

where the first terms is zero from Corollary III.2.1, and the
second term converges to zero exponentially as d(S,supp)
approaches infinity.

We are now in a position to provide our metric of locality.

Definition III.2 (Locality). For an optimization problem of
the form of problem 1, we define the locality of the problem
as

λ ( f , A) = sup
x

ρ(I−AΣ(x)AT ). (5)

The definition of locality also extends to classes of problems.
Explicitly, if it is known that f ∈ F , and A ∈A , we define
the locality of the class of problems as

λ (F, A ) = sup
f∈F,A∈A

λ ( f , A). (6)

For example, in network flow problems the class of con-
straint matrices, A , are those representing flow conservation
constraints. The flow conservation constraint at a given node
only affects variables for flows departing or arriving at

that node; accordingly, if the objective function is separable
function of the flow on each edge, the distance metric d
corresponds to the shortest-path distance in the network flow
graph. As shown in [13], the expression I−AΣ(x)AT reduces
to the appropriately weighted graph Laplacian, and λ (F, A )
can be shown in closed form to equal one [18].

C. Discussion

The locality of a problem is characterized by λ and by the
distance metric, d. The value of λ characterizes the impact
of the constraints on components of the optimal solution as a
function of the previously defined distance metric. If λ < 1,
this impact decays exponentially at rate λ , and the problem
is said to be exponentially local. The locality of a problem
naturally characterizes the quantity of problem information
necessary to solve for components of the optimal solution.
The distance metric, d, may seem esoteric as it measures
the distance between primal variables, which are inherently
tied to agents in the networks, and dual variables, which
may not have an immediate physical interpretation. However,
for many problems of interest, this distance metric can very
naturally be translated to one that is physical, primarily if
being involved in the same constraints indicates physical
proximity. For example, if constraints represent tasks that
need to be completed at some location, and only agents
within range of that location can complete the task, then
the graph distance metric is closely related to geographical
distance.

The metrics proposed in this section characterize the
locality of a specific instance of an optimization problem.
However, in most practical applications, the specific instance
of the optimization problem to be solved is not known in
advance, but is determined at run time by the agents’ states
and observations, and by the environment itself. Indeed, if
the specific optimization problem to be solved was known in
advance, there would be no need to solve it in a distributed
fashion. Nevertheless, a priori knowledge of the exact prob-
lem the network will face at the time of execution is often
not necessary to take advantage of locality; we can still
exploit knowledge of the class of problem the system is
designed to solve to estimate their locality. As a concrete
example, in Section V we validate our theoretical results to
an network load-sharing problem where the constraint vector
b is determined at run-time. In such a scenario, because
the constraint matrix and objective function are fixed, the
metric proposed in this section can be directly applied.
Even when the constraint matrix or objective function is
determined on the fly, the system designer has full knowledge
of the map from environment to optimization problems. If
all possible problem instances exhibit locality, again, the
metric proposed in this section can be directly applied. In the
case that enumerating all of these problems is intractable, a
sampling-based approach can still be leveraged to estimate
the locality of a family of problems. Similarly, computing
the locality parameter of a problem comes down to checking
the spectral conditions for the entire decision space, which
may be infeasible to do so in closed form. In this case, we
suggest a sampling-based approach for estimating the locality
parameter.



IV. EXPLOITING LOCALITY FOR COLD-START
OPTIMIZATION

We are now in a position to exploit the locality metrics
proposed in Section III to design communication-efficient
distributed optimization algorithms to approximately solve
Problem 1. Specifically, we show that the original opti-
mization problem can be partitioned into independent sub-
problems, with the sub-problem size specified by a predeter-
mined bound (chosen as a function of the problem’s degree
of locality and error tolerance). Locality guarantees that, for
a specified error tolerance, solution components of the sub-
problems can then be “patched” together to approximately
recover the globally optimal solution by computing a cor-
rection factor only for components that are near the broken
constraints (in the sense of the distance metric of Section III).
This gives rise to a two-phase optimization algorithm where
the problem is partitioned into sub-problems and solved in
the first phase, and the sub-problems are patched together in
the second phase.

This section is organized as follows. Sections IV-A and
IV-B will be dedicated to the first and second phases of the
algorithm respectively. Each of the subsections will begin
with motivation and proof of correctness from a centralized
standpoint (for clarity and ease of notation). We will then
comment on how each phase can be implemented in a
distributed manner.

We must first define how the quality of an approximate
solution to an optimization problem will be quantified. While
approximate solutions are typically assessed by the sub-
optimality of the objective function, often in practice, the
decision variable represents an action to be taken. Motivated
by this, we want a handle of the error in the decision variable,
and the constraint violations. We say a solution x̂ is an
(εx,εC) approximation if ‖Ax̂−b‖

∞
< εC, and ‖x∗− x̂‖2 < εx.

We note that by strict convexity of the objective, the optimal
solution is guaranteed to be unique. This not only ensures
that our notion of an approximate solution is well-defined,
but rules out the case of “jumps” to other optimal solutions.

A. Phase I: Partitioning and Solving the sub-problems
In this section we show that by ignoring an appropriate

subset of the constraints, our original problem can be par-
titioned into independent sub-problems. We will also show
that the solution obtained from solving the sub-problems is
an optimal solution for a perturbed version of the original
problem. This interpretation is key for making the connection
between the “warm-start” scenario presented in [13] (where
the algorithm needs to compute x∗(b+ p) given the solution
x∗(b)) to the “cold-start” scenario (where the algorithm must
compute x∗(b) from scratch).

Precisely, the following lemma shows that, if removing a
subset of the constraints, C ⊆ V (d), and its adjacent edges
partitions Geff into multiple connected components, then the
original problem can be partitioned into independent sub-
problems.

Lemma IV.1. Let C⊆V (d) be a set of constraints such that
removing the vertices C and its adjacent edges partitions Geff
in connected components, 3 G1, . . . ,Gp. Then,

3We say v(d)i ∈V (d), and v(d)j ∈V (d) are in different connected components
of G̃eff if there is no path from one to the other

1) There are no shared primal variables between the
connected components: SGi ∩SG j = /0 if i 6= j;

2) We can write the objective function as a sum of
additively separable functions: f (x) = ∑

p
i=1 fi(xSGi

).

Proof Sketch. The result follows by relating the graph struc-
ture of Geff to the sparsity patterns of A and Σ(x), specifically
by showing that separability in Geff implies that the appro-
priate components of these objects are zero.

It follows from the previous lemma that the original
problem can be partitioned into independent sub-problems
given by

minimize
x ∈ RN

fi(xSGi
)

subject to ACi,SGi
xSGi

= bGi

(7)

We relate the solution of this problem to our original
problem by showing that the solution obtained is the solution
to a perturbed variant of our original problem.

Lemma IV.2 (Implicit Constraints). Let C⊆V (d) and let x̂∗
be the minimizer of

minimize
x ∈ RN

f (x)

subject to A−C,∗x = b−C

(8)

If b̂ = Ax̂∗, then x̂∗ is the minimizer of
minimize
x ∈ RN

f (x)

subject to Ax = b̂
(9)

Proof Sketch. The result follows from showing that the fea-
sible set of Problem (9) is a subset of the feasible set of
Problem (8).

Full proofs of Lemmas IV.1 and IV.2 are reported in the
Supplementary Material.

1) Distributed Implementation of Phase I: To implement
phase I in a distributed manner we need to generate the
constraint cut-set, C, in a distributed manner. This can be
accomplished using the algorithm of Linial and Saks [19]
for weak-diameter graph decomposition as a subroutine to
cluster the constraints and elect leaders for each cluster. An
overview of the algorithm is included in the Supplementary
Material for completeness. The algorithm of Linial and Saks
generates a subset of the constraints C̃ ⊂V (d) and assigns a
leader l(u) ∈ V (d) for each u ∈ C̃, such that, if u, v ∈ V (d)
are assigned to different leaders, then there is no edge
between them in Geff. The connected components G1, . . . ,Gp
as referenced in Section IV are simply the constraints that
have been assigned the same leader, and C = V (d) \ C̃ is
implicitly the set of constraints that are not assigned to any
cluster. The leader for each cluster solves the cluster’s sub-
problem and informs agents in its cluster of their own optimal
solution values.

We let x(k) be the aggregate of privately known solution
components at iteration k, and initialize x(0) with the solution
of the sub-problems. We define b(0) =Ax(0) to be the implicit
constraints in the first phase.

B. Phase II: Patching
In the previous section, we obtained the solution to a

perturbed variant of our original problem. In this phase,
we will need to provide a correction factor to drive the
solution of the partitioned problem to that of the target



problem. Critically, we will show that this correction factor
can be computed efficiently and in a distributed manner if
our problem is exponentially local.

It follows from Lemma IV.2 that x(0) is the minimizer
of

minimize
x ∈ RN

f (x)

subject to Ax = b(0)
(10)

If the problem exhibits locality, we can then express the
optimal solution as the solution of the partitioned problem
plus a correction factor. Explicitly,

x∗(b) = x∗(b̂)+
∞

∑
i=0

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )idθ

)
∆

(11)
where ∆ = b− b̂, and xθ := x∗(b+θ∆). Thanks to locality,
we can approximate x̂∗(b)≈ x∗(b) as

x̂∗(b̂+∆) = x∗(b)+
K

∑
i=0

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )idθ

)
∆

(12)
where K represents the number of terms of the Neumann
sum used.

Theorem IV.3. The solution generated from
taking the K-term truncation of x̂∗(b) is an(

supx‖Σ(x)AT‖
1−λ

λ K+1 ‖∆‖ , 1+λ

(1−λ )
√

m λ K+1 ‖∆‖
)

approximation.

Proof Sketch. The proof of the error term in x follows di-
rectly from applying the definition of locality to the truncated
approximation of x̂∗(b). A similar error analysis can be
applied to Ax∗(b) to recover the error in the constraints.

From here on, we will refer to the number of terms in the
truncation, K, as the “radius of repair”, corresponding to the
distance around ∆ that we compute corrections for.

Theorem IV.3 quantifies the trade-off between a number of
algorithmic design choices and solution accuracy, primarily
the size of the sub-problems chosen in the first phase, through
‖∆‖, and communication in the second phase, through K.
Both the relationship between ‖∆‖ and the size of sub-
problems, and the dependence of communication volume on
K are problem specific. In Section V, we provide an example
assessing both of these trade-offs for a network load-sharing
problem.

1) Distributed Implementation of Phase II: The key in-
sight that will allow us to implement the correction step in
a distributed manner is that correction in Equation (11) can
be represented as a series of sequential updates rather than
a single update; these updates will be the target values for
each iteration of the algorithm. By continuity of Σ(xθ )AT (I−
AΣ(xθ )AT )k, the path over which we integrate does not
matter, and the sequence of updates

x̂(k+1) = x̂(k)+
∞

∑
i=0

(∫ 1

0
Σ(x̂(k)

θ
)AT (I−AΣ(x̂(k)

θ
)AT )idθ

)
∆
(k)

(13)
converges to x∗(b) within |supp(∆)| iterations, where x̂(k)

θ
=

x̂∗(b(k)+θ∆(k)), b(k) = Ax̂(k), ∆(k) = (b−b(0))S(k) , and {S(k)}
partitions the support, supp(b−b(0)) =C. We let x(k) be the
approximation to x̂(k) by truncating the Neumann series to
Rk terms. These updates can be interpreted as traversing
the optimal surface to iteratively drive b(0) to b. While

the support of ∑
K
i=0

(∫ 1
0 Σ(x̂θ )AT (I−AΣ(x̂θ )AT )idθ

)
∆ may

span the entire network, the sequential updates circumvent
this by localizing the support of each of the truncated updates
∑

Rk
i=0

(∫ 1
0 Σ(x̂(k)

θ
)AT (I−AΣ(x̂(k)

θ
)AT )idθ

)
∆(k) around ∆(k).

For ease of presentation, in the remainder of this section
we will assume f is quadratic so Σ(x) = Σ is constant. Trun-
cating the approximation at each iteration introduces drift
away from the optimal surface. Because this also introduces
error in the integrand, the total error at the end is not simply
the sum of the errors made at each step. Straightforward,
but tedious, modifications to our analysis can be made to
account for this drift. The distributed implementation of

Algorithm 1: Phase II—Patching Phase

input: I(0),x(0),b(0) from Phase I
1 while I(k) 6= /0 do

2 R←min
{

r : ‖ΣAT‖
1−λ

λ r+1
∥∥∥∆(k)

∥∥∥< εx

|I(0)|

}
;

3 x̃(k+1) = x(k)+∑
R
i=0

(∫ 1
0 ΣAT (I−AΣAT )kdθ

)
∆(k) ;

4 if {i ∈V (d) : |(Ax̃(k+1)−b)i| ≥ ε}( I(k) then
5 x(k+1)← x̃(k+1), k← k+1;
6 else
7 R← R+1, go to 3;
8 end
9 end

the second phase is presented in Algorithn 1. It circumvents
the fact that we cannot use a priori knowledge of ‖∆‖ to
compute the number of terms to include in the truncation.
The algorithm operates by iteratively including more terms
and testing for constraint violations. While an upper bound
on
∥∥ΣAT

∥∥ can be computed along with λ , |I(0)| will need to
be estimated, and in general will depend on how the cut-set,
C is generated. We refer the reader to the Supplementary
Material for an example illustrating the estimation of |I(0)|
based on the mechanism for partitioning in phase I.

Theorem IV.4 (Suboptimality Bounds of the Patching
Phase). If |I(0)| is known, Algorithm 1 is guaranteed to
generate an (εx,εC) approximate solution within |I(0)| outer
iterations.

Proof Sketch. The proof follows from the observation that
that the algorithm will not terminate until the constraint
bound is satisfied. The x error bound follows from lower-
bounding the radius of repair for each iteration and applying
Theorem IV.3.

By applying Corollary III.2.1, we can characterize the sup-
port of ∑

R
i=0

(∫ 1
0 ΣAT (I−AΣAT )kdθ

)
∆(k). This will allow

us to efficiently implement Algorithm 1 by only exchanging
necessary information for each update. Specifically, note that
[x̃(k+1)−x(k)] j = 0 if d(v(p)

j ,supp(∆(k)))>R so these solution
components do not need to be updated. Similarly, because
Ax̃(k+1) =: b̃(k+1),

b̃(k+1)=Ax(k)+A
R

∑
i=0

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )idθ

)
∆
(k).

This implies that if dGeff(v
(d)
i ,supp(∆))≥K+2 then b̃(k+1)

i =

b(k)i . Consequently, it suffices to calculate AB(supp(∆),K+1),∗x



where B(C,k) := {v(d)i |dGeff(v
(d)
i ,C) ≤ k}, where only the

values of {v(p)
i |d(v

(p)
i ,supp(∆)) ≤ K + 1} are necessary

for calculating AB(supp(∆),K+1),∗x. Finally, the entirety of∫ 1
0 Σ(xθ )AT (I−AΣ(xθ )AT )idθ does not need to be explic-

itly computed; instead
(∫ 1

0 Σ(xθ )AT (I−AΣ(xθ )AT )idθ

)
∆(k)

should be computed via a series of sparse matrix vector
products that only require information from nodes v(p)

i where
d(v(p)

i ,supp(∆(k)))≤ R.
We presented a leader-election based algorithm for the first

phase of the algorithm, however, other methods can also be
applied. In the Supplementary Material, we discuss scaling
of the distributed subgradient method with network size for
our numerical example, and comment on how locality can
be used to reduce the communication volumne needed by
the distributed subgradient method.

V. EXPERIMENTS

In this section, we use a simplified example of network
load-sharing to validate our theoretical results. We simulate
the distributed algorithm of Section IV on problem instances
of varying locality to demonstrate the effect of locality on
algorithm convergence and to assess the tightness of our
bounds. We also demonstrate how some of the algorithm
design trade-offs discussed in Section IV can be assessed
for this problem setting.

A. Problem Setting
We consider a setting where agents are positioned in a grid

of size M×N, and the 4 agents bordering each grid cell need
to share the load generated in their grid cell L (i). The loads
could represent a joint task that needs to be completed, or
a resource the needs to be stored. There is a preference for
equitably distributing each load, as well as not overloading
any one agent. We encode these preferences in the objec-
tive function f (x) = α

2 ∑i
(
∑ j∈N (i) xi, j

)2
+ β

2 ∑i ∑ j∈N (i) x2
i, j,

where we let i index the agents, and j the loads, and the
variable xi, j captures the assignment. With some abuse of
notation we let { j ∈N (i)} be the set of loads that agent i
can service, and {i ∈N ( j)} be the set of agents who can
service load j. The following optimization problem describes
the system objectives and constraints

minimize
x

α

2 ∑
i

(
∑

j∈N (i)
xi, j

)2

+
β

2 ∑
i

∑
j∈N (i)

x2
i, j

subject to ∑
i∈N ( j)

xi, j = L j, ∀ j
(14)

For a fixed maximum sub-problem size, m×n, we partition
the original problem into sub-problems by tiling the
(M − 1)× (N − 1) grid of constraints with sub-grids of
size m × n, and ignoring any constraints between tiles.
The resulting sub-problems are fully decoupled and can be
solved in parallel by an elected leader in each partition.
Note that only the constraints that were originally ignored
are violated at this step and consequently are the only
ones that need to be repaired. Also note that, if α = 0, the
problem fully decouples and the optimal solution is given
by splitting each load evenly between its servicing agents.
The parameters α and β allow us to tune the locality of the
problem and investigate the performance of our algorithm
for various rates of locality.

B. Effect of Locality on Convergence
In this example, we fixed the dimension of the global

problem to be 36×36 and allowed maximum sub-problems
of size 5× 5. This results in the original problem being
partitioned into 36 sub-problems. We fixed β = 3 and let
α range from 0.5 to 3.5 by increments of 0.1. The locality
parameter was empirically calculated and was found to range
from 0.33 to 0.76. Figure 1 plots error in the optimization
variable versus radius of repair for varying locality parame-
ters. In addition to showing convergence as the radius grows
to encompass all agents, the plot indicates that solution
accuracy depends heavily on the locality parameter—in other
words, the amount of communication required to solve a
distributed optimization problem is directly related to the
locality metric we have proposed.

Fig. 1: Effect of locality parameter on convergence in the
patching phase of the optimization algorithm.

In Figure 2, we compare our theoretical predictions to
the true behavior of the locality aware algorithm for a
representative sample of problem instances. In all cases, our
theoretical bounds on convergence are tight.

Fig. 2: The theoretical convergence rate is plotted as a dotted
line and the corresponding true convergence rate is plotted
as a solid line in the same color.

C. Phase I and Phase II Trade-offs
We now illustrate how one can assess the algorithmic

trade-off between cluster size and required number of patch-
ing iterations presented in Section IV, so as to give the reader
a sense for how similar analysis can be carried out on their



problem. We consider the network load-sharing problem on
both a 36× 36 grid (which we will refer to as the “square
grid”) and a 36×2 grid (the “long grid”). For both problems,
we fix α = 1, β = 3, and sweep the maximum sub-problem
size from 2×2 to 35×35. Figure 3 shows the convergence
of the patching phase for both the square and the long grid.

Fig. 3: Convergence of the patching phase on the square grid
(left) and long grid (right).

Notably, the plot shows that solution accuracy in the first
phase is not monotonic with the maximum sub-problem size.
This is a direct consequence of the fact that how “tight” a
constraint is dictates how solution accuracy is affected by
cutting it. While there are methods for generating sparse cuts
in a distributed manner [20], to the best of our knowledge,
generating “loose” cuts is an unexplored problem. Such an
algorithm, however, could dramatically improve our locality-
aware algorithm, and we highlight it as a potential future
direction.

Crucially, the same radius of repair for the square grid and
long grid do not equal the same volume of communication.
On the square grid, a one unit increase in the radius of
repair results in a factor of 4 multiplicative increase in the
communication volume. In contrast, on the long grid, a one
unit increase in the radius of repair results in an additive
increase of 4 times the number of broken constraints. The
interpretation of the radius of repair depends closely on the
structure of the underlying problem. Such structure should
be carefully evaluated when assessing the trade-off between
the size of sub-problems solved in the first phase and the
communication volume needed in the second phase.

VI. CONCLUSION

We have studied the structure of linearly constrained con-
vex optimization problems and provided a method of tracking
the cascading effects of a perturbation of the remainder of the
network. This gave rise to a notion of locality suggesting that
certain global optimization problem with ”local” structure
can be solved on much smaller scales. We applied this notion
of locality to design a distributed optimization algorithm
that explicitly takes advantage of this fact. We validated
our results on a network load-sharing problem, and provided
an example of how one could assess the trade-offs between
some of the free parameters in the algorithm.

The framework of locality presented in this paper mo-
tivates further investigation for a number of interesting
questions:
• Once we have quantified the importance of problem

information to solution components, how can we use
such knowledge to systematically design optimal com-
munication protocols?

• How can we optimally, and in a distributed manner,
choose the constraint cut-sets to balance the size of
sub-problems solved in the first phase of the algorithm
and the amount of communication needed in the second
phase?

• How can locality be used to improve the efficiency of
existing distributed optimization algorithms?

ACKNOWLEDGMENTS

Part of this research was carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Adminis-
tration.

REFERENCES

[1] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network Topology and
Communication-Computation Tradeoffs in Decentralized Optimiza-
tion,” arXiv e-prints, p. arXiv:1709.08765, Sep 2017.

[2] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Transactions on
Automatic Control, vol. 55, no. 4, pp. 922–938, April 2010.

[3] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra,” SIAM J. on
Optimization, vol. 25, no. 2, pp. 944–966, May 2015. [Online].
Available: https://doi.org/10.1137/14096668X

[4] A. Chen and A. Ozdaglar, “A fast distributed proximal-gradient
method,” CoRR, vol. abs/1210.2289, 2012. [Online]. Available:
http://arxiv.org/abs/1210.2289

[5] D. Jakovetić, J. Xavier, and J. M. F. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1131–1146, May 2014.

[6] K. Srivastava and A. Nedić, “Distributed asynchronous constrained
stochastic optimization,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 4, pp. 772–790, Aug 2011.

[7] A. Nedić and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” in 2013 IEEE 52nd Annual Conference
on Decision and Control, CDC 2013. United States: Institute of
Electrical and Electronics Engineers Inc., 2013, pp. 6855–6860.

[8] K. I. Tsianos and M. G. Rabbat, “Distributed consensus and opti-
mization under communication delays,” in 2011 49th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
Sep. 2011, pp. 974–982.

[9] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed
dual averaging for convex optimization,” in 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC), Dec 2012, pp. 5453–
5458.

[10] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606,
March 2012.

[11] D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, and L. Schen-
ato, “Newton-raphson consensus for distributed convex optimization,”
IEEE Transactions on Automatic Control, vol. 61, no. 4, pp. 994–1009,
April 2016.

[12] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed
optimization methods,” IEEE Transactions on Signal Processing,
vol. 65, no. 1, pp. 146–161, Jan 2017.

[13] P. Rebeschini and S. Tatikonda, “Locality in network optimization,”
IEEE Transactions on Control of Network Systems, vol. 6, no. 2, pp.
487–500, June 2019.

[14] C. C. Moallemi and B. Van Roy, “Convergence of min-sum message-
passing for convex optimization,” IEEE Transactions on Information
Theory, vol. 56, no. 4, pp. 2041–2050, April 2010.

[15] R. A. Brown, F. Rossi, K. Solovey, M. T. Wolf, and M. Pavone. (2020)
Exploiting locality and structure for distributed optimization in multi-
agent systems (extended version). Available at http://asl.stanford.edu/
wp-content/papercite-data/pdf/Brown.Rossi.ea.ECC20.pdf.

[16] C. A. Bererton, “Multi-robot coordination and competition using
mixed integer and linear programs,” Ph.D. dissertation, 2004.
[Online]. Available: https://search.proquest.com/docview/305204035?
accountid=14026

[17] S. H. Low and D. E. Lapsley, “Optimization flow control. i. basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, Dec 1999.

[18] D. Spielman, “Spectral graph theory,” Lecture Notes, Yale University,
pp. 740–0776, 2009.

[19] N. Linial and M. Saks, “Low diameter graph decompositions,” Com-
binatorica, vol. 13, no. 4, p. 441–454, 1993.

[20] D. A. Spielman and S.-H. Teng, “A local clustering algorithm
for massive graphs and its application to nearly linear time graph
partitioning,” SIAM Journal on Computing, vol. 42, no. 1, pp. 1–26,
2013. [Online]. Available: https://doi.org/10.1137/080744888



[21] T. Davis, Direct Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics, 2006. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9780898718881

[22] J.-J. Climent, N. Thome, and Y. Wei, “A geometrical approach on
generalized inverses by neumann-type series,” Linear Algebra and Its
Applications - LINEAR ALGEBRA APPL, vol. 332, pp. 533–540, 08
2001.

VII. APPENDIX

A. Sparse Cholesky Factorization and the Solution to Sparse
Linear Systems

The sparsity pattern of AΣ(x∗(b))AT can be characterized
in closed form by leveraging techniques typically used to
accelerate sparse linear solvers.

By assumption, f is strongly convex and twice continu-
ously differentiable so ∇2 f (x) is positive definite and has
a unique Cholesky factorization L(x)L(x)T = ∇2 f (x), where
L(x) is a lower triangular matrix with real and positive diago-
nal entries. Noting that AΣ(x)AT = (L(x)−1AT )T (L(x)−1AT ).

Lemma VII.1 (Sparsity Structure of the Cholesky Factor-
ization). For a Cholesky factorization L(x)L(x)T = ∇2 f (x),
neglecting numerical cancellation,
• If [∇2 f (x)]i j 6= 0 then L(x)i j 6= 0 ;
• For indices i < j < k, L(x) ji 6= 0, and L(x)ki 6= 0 then

L(x)k j 6= 0.

Figure 4 depicts the fill-in structure of the sparse Cholesky
factorization.

Fig. 4: Fill-in structure of the sparse Cholesky factorization

For a given matrix lower triangular matrix L ∈RN×N , we
define the directed graph GL(VL,EL) with nodes VL = [N]
and edges EL = {( j, i) : li j 6= 0}. Let ReachL(i) denotes the
set of nodes reachable from node i via paths in GL, and
let ReachL(S) for subset S⊆ [N] be defined as ReachL(S) =⋃

i∈S ReachL(i)

Lemma VII.2 (Support of the Solution to a Sparse Linear
System). The support, supp(x) := { j : x j 6= 0}, of the solution
x to the sparse linear system Lx = b is given by supp(x) =
ReachL(supp(b))

We refer the reader to [21] for the proofs of Lemmas VII.1
- VII.2. The sparsity patterns of both L(x)−1AT and AΣ(x)AT

can be derived as immediate consequences of Lemma VII.2.

Lemma VII.3. Neglecting numerical cancellation,
supp([L(x)−1AT ]∗,i) = ReachL(x)(Si). Furthermore,
[AΣ(x)AT ]i j 6= 0 if ReachL(x)(Si)∩ReachL(x)(S j) 6= /0

B. Section III Proofs
Theorem (III.2). For k ∈ Z+, neglecting numerical cancel-
lation,

supp((I−AΣ(x)AT )k) = {(i, j)|dGeff(x)(vi,v j)≤ k}

⊆ {(i, j)|dGeff(vi,v j)≤ k}.

Proof. For ease of notation, we let M = I − AΣ(x)AT , so
Muv 6= 0 if and only if (u,v) ∈ Eeff(x). An edge constitutes a
path of length one so the result hold true for k = 1.

We now proceed by induction. Suppose for all j ≤
k, supp((I − AΣ(x)AT ) j) = {(u,v)|dGeff(x)(u,v) ≤ j} Then
Mk+1 =MMk, and Mk+1

uv =Mu∗Mk
∗v. Thus, if Mk+1

uv 6= 0, there
exists w such that Muw 6= 0 and Mk

wv 6= 0. Consequently,
(u,w) ∈ Eeff(x) and there is a path of length at most k from
w to v. We concatenate these paths to find a path of length
at most k+1 from u to v. Similarly, if there is a path from
u to v of length at most k+1 in Geff then letting w be the
first vertex after u along this path, there is an edge from
u to w and there is a path of length at most k from w
to v. Thus, Muw 6= 0 and Mk

wv 6= 0, so neglecting numerical
cancellation Mu∗Mk

∗v = Mk+1
uv 6= 0. Taking the the union over

all x, Geff := (V (d),
⋃

x∈D Eeff(x)), yields our result.

Theorem (III.3). A linearly constrained convex optimization
problem is exponentially local with parameter λ if
supx ρ(I − AΣ(x)AT ) = λ < 1, where ρ(M) denotes the
largest singular value of the matrix M.

Proof. If ρ(I−AΣ(x)AT )< 1 then ∑
∞
i=0(I−AΣ(x)AT )k con-

verges [22]. Furthermore, AΣ(x)AT is invertible with inverse
(AΣ(x)AT )−1 = ∑

∞
i=0(I−AΣ(x)AT )k. We can rewrite Equa-

tion (2)
dx∗(b)

db
= Σ(x∗(b))AT (AΣ(x∗(b))AT )−1

= Σ(x∗(b))AT
∞

∑
i=0

(I−AΣ(x∗(b))AT )i

It is important that Equation (2) is based on Hadamard’s
global inverse function theorem (rather than the implicit
function theorem, which holds only locally). The implication
is that the derivative of the optimal point is continuous
everywhere along the subspace Im(A). This allows us to
apply the fundamental theorem of calculus allows us to
integrate through this expression to determine sensitivity of
the optimal point of finite perturbations in the constraint
vector. Formally,

x∗(b+∆)− x∗(b) =
(∫ 1

0

dx∗(b+θ∆)

dθ
dθ

)
∆

=

(∫ 1

0
Σ(xθ )AT (AΣ(xθ )AT )−1dθ

)
∆

=

(∫ 1

0
Σ(xθ )AT

∞

∑
i=0

(I−AΣ(xθ )AT )kdθ

)
∆

=
∞

∑
i=0

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )kdθ

)
∆

where xθ := x∗(b+θ∆).∥∥∥∥∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )kdθ

∥∥∥∥
≤

∞

∑
i=0

∥∥∥∥∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )kdθ

∥∥∥∥
≤
∫ 1

0

∥∥∥Σ(xθ )AT (I−AΣ(xθ )AT )k
∥∥∥dθ

≤
∫ 1

0

∥∥Σ(xθ )AT∥∥∥∥∥(I−AΣ(xθ )AT )k
∥∥∥dθ



≤
∫ 1

0

∥∥Σ(xθ )AT∥∥ρ(I−AΣ(xθ )AT )kdθ

≤ sup
x

∥∥Σ(x)AT∥∥∫ 1

0
ρ(I−AΣ(xθ )AT )kdθ

≤ sup
x

∥∥Σ(x)AT∥∥∫ 1

0
sup

x
ρ(I−AΣ(x)AT )kdθ

≤ sup
x

∥∥Σ(x)AT∥∥sup
x

ρ(I−AΣ(x)AT )k

≤ sup
x

∥∥Σ(x)AT∥∥sup
x

ρ(I−AΣ(x)AT )k

≤ sup
x

∥∥Σ(x)AT∥∥λ
k

By strong convexity of f , supx
∥∥Σ(x)AT

∥∥ exists, and is finite.
From Corollary III.2.1,

(x∗(b+∆)− x∗(b))S

=
∞

∑
i=d(S,supp(∆))

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )kdθ

)
∆ (15)

We take the norm of the perturbed solution to conclude the
proof.

‖(x∗(b+∆)− x∗(b))S‖

=

∥∥∥∥∥ ∞

∑
i=d(S,supp(∆))

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )kdθ

)
∆

∥∥∥∥∥
≤

∥∥∥∥∥ ∞

∑
i=d(S,supp(∆))

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )kdθ

)∥∥∥∥∥‖∆‖
≤

∞

∑
i=d(S,supp(∆))

∥∥∥∥(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )kdθ

)∥∥∥∥‖∆‖
≤

∞

∑
i=d(S,supp(∆))

sup
x

∥∥Σ(x)AT∥∥λ
k ‖∆‖

= sup
x

∥∥Σ(x)AT∥∥‖∆‖ ∞

∑
i=d(S,supp(∆))

λ
k

=
supx

∥∥Σ(x)AT
∥∥

1−λ
‖∆‖λ

d(S,supp(∆))

C. Section IV Proofs
Lemma (IV.1). Let C⊆V (d) be a set of constraints such that
removing the vertices C and its adjacent edges partitions Geff
in connected components 4 G1, . . . ,Gp.

1) There are no shared primal variables between the
connected components: SGi ∩SG j = /0 if i 6= j

2) We can write the objective function as a sum of
additively separable functions: f (x) = ∑

p
i=1 fi(xSGi

)

Proof. Note that if v(d)i ∈ Gi and v(d)j ∈ G j are in different
connected components of G̃eff then there cannot be an edge
between v(d)i and v(d)j , so [A−C,∗Σ(x)AT

−C,∗]i j = 0. Because
the diagonal elements of ∇2 f (x) are strictly positive, if SGi ∩
SG j 6= /0 then [A−C,∗Σ(x)AT

−C,∗]i j 6= 0. This holds true for all

i 6= j and for all v(d)i ∈ Gi and v(d)j ∈ G j so SGi ∩SG j = /0 if
i 6= j.

4We say v(d)i ∈V (d), and v(d)j ∈V (d) are in different connected components
of G̃eff if there does not exist a path from one to the other

Without loss of generality, let i > j. We will show that if
[∇2 f (x)]i j 6= 0 then there is an edge between v(d)i and v(d)j in
G̃eff. Note that if [∇2 f (x)]i j 6= 0 then L(x)i j 6= 0. Additionally,
Lii > 0 and L j j > 0. Let v(d)i ∈Gi and v(d)j ∈G j be such that

v(p)
i ∈ S

v(d)i
and v(p)

j ∈ S
v(d)j

. If L(x)i j 6= 0 then [L−1AT
v(d)j ,∗

]i 6= 0.

Note that [L−1AT
v(d)i ,∗

]i 6= 0 as well so [A−C,∗Σ(x)AT
−C,∗]i j 6= 0

and there is an edge between v(d)i and v(d)j in G̃eff. If v(d)i

and v(d)j are in different connected components in G̃eff, there
cannot be an edge between them. Consequently, [∇2 f (x)]i j =
0 and we can separate f (x)= f (S1)+ f (S2) where S1∩S2 = /0
and S

v(d)i
⊆ S1,Sv(d)j

⊆ S2. Inducting on all pairs of Gi and G j

proves our result.

Lemma (IV.2). Let C ⊆ V (d) and let x̂∗ be the minimizer
of

minimize
x ∈ RN

f (x)

subject to A−C,∗x = b−C

(16)

and b̂ = Ax̂∗. Then, x̂∗ is the minimizer of
minimize
x ∈ RN

f (x)

subject to Ax = b̂
(17)

Proof. Note that on V (d) \C, the implicit constraints are
equal to the true constraints. Precisely, b−C = b̂−C.

The constraints in Problem (8) are a subset of the con-
straints in Problem (9). Therefore, the feasible set of Problem
(9) is contained in the feasible set of Problem (8). Explicitly,

{x|Ax = b̂}= {x|A−C,∗x = b−C, AC,∗x = b̂C}
⊆ {x|A−C,∗x = b−C.}

Therefore, if x̂∗ is not optimal for Problem (9), it is also
suboptimal for Problem (8).

Theorem (IV.3). The solution generated from
taking the K-term approximation of x̂∗(b) is an(

supx‖Σ(x)AT‖
1−λ

λ K+1 ‖∆‖ , 1+λ

(1−λ )
√

m λ K+1 ‖∆‖
)

approximation.

Proof. The error induced by truncating the sum in Equation
(11) can be expressed as

δ = x∗(b+∆)− x̂∗(b+∆)

=
∞

∑
i=K+1

(∫ 1

0
Σ(xθ )AT (I−AΣ(xθ )AT )idθ

)
∆.

The magnitude of the error in the optimal solution can be
bounded as

‖δ‖ ≤
supx

∥∥Σ(x)AT
∥∥

1−λ
λ

K+1 ‖∆‖ (18)
It follows that the truncation error converges exponentially
to zero at a rate of λ ; the errors in the constraints and
optimization variable both converge to zero exponentially as
well. Similarly, the constraint error is given by Aδ . Taking
the norm,

‖Aδ‖
∞
≤

supx
∥∥AΣ(x)AT

∥∥
∞

1−λ
λ

K+1 ‖∆‖

≤
supx

∥∥AΣ(x)AT
∥∥

2
(1−λ )

√
m

λ
K+1 ‖∆‖

≤ 1+λ

(1−λ )
√

m
λ

K+1 ‖∆‖



yields the result.

Theorem (IV.4). Algorithn 1 is guaranteed to generate an
(εx,εC) approximate solution within |I(0)| outer iterations.

Proof. At iteration k, we define x(k) to be the aggregate of
privately known solution components, b(k) = Ax(k) to be the
implicit constraints, and I(k) = {i ∈ [M] : |(b(k)− b)i| ≥ ε}
to be the violation set. Picking any element of our violation
set i(k) ∈ I(k), our goal is to drive b(k+1)

i(k)
to bi(k) , so we let

∆(k) = (bi−b(k)
i(k)

)ei(k) , and define the following

x̂(k+1) = x(k)+
∞

∑
i=0

(∫ 1

0
Σ(x(k)

θ
)AT (I−AΣ(x(k)

θ
)AT )idθ

)
∆
(k)

x(k+1) = x(k)+
K

∑
i=0

(∫ 1

0
Σ(x(k)

θ
)AT (I−AΣ(x(k)

θ
)AT )idθ

)
∆
(k)

δ
(k+1) =

∞

∑
i=K+1

(∫ 1

0
Σ(x(k)

θ
)AT (I−AΣ(x(k)

θ
)AT )idθ

)
∆
(k)

where x(k)
θ

:= x∗(b(k)+θ∆(k)). Intuitively, x̂(k+1) is our target
value for iteration k + 1, x(k+1) is our approximation of
x̂(k+1), and δ (k+1) is the error in our approximation.

The implicit constraints at each iteration iteration can be
expressed recursively as the sum of the implicit constraints
at the previous iteration, the target correction factor, and the
truncation error. Explicitly,

b(k+1) = b(k)+∆
(k)−Aδ

(k+1)

By definition of I(k), if i 6∈ I(k) then |(b(k)− b)i| < ε so for
each i 6∈ I(k) there exists εi > 0 such that |(b(k)−b)i|+εi < ε .
Let ε(k) = mini 6∈I(k) εi. Then there exists RC such that

1+λ

(1−λ )
√

m
λ

RC+1 ‖∆‖< ε
(k). (19)

Similarly, for each ∆(k) there exists Rx such that∥∥ΣAT
∥∥

1−λ
λ

Rx+1
∥∥∥∆

(k)
∥∥∥< εx

|I(0)|
(20)

Taking R=max(RC,Rx) allows both equations to be satisfied.
So, for each outer iteration, there is some R that allows the
inner loop to terminate. In particular, for each iteration R≥
Rx. We can express our total error in x as the sum of the errors
made in each other iteration, so by the triangle inequality,∥∥∥∥∥∥

|I(0)|

∑
k=1

δ
(k)

∥∥∥∥∥∥≤
|I(0)|

∑
k=1

∥∥∥δ
(k)
∥∥∥

≤
|I(0)|

∑
k=1

∥∥ΣAT
∥∥

1−λ
λ

Rx+1
∥∥∥∆

(k)
∥∥∥

≤
|I(0)|

∑
k=1

εx

|I(0)|
< εx

Then, within |I(0)| outer iterations, I(|I
(0)|) = /0 so the al-

gorithm terminates. The termination condition, I(|I
(0)|) = /0

ensures that the constraint bounds are met.

D. The Linial and Saks Algorithm for Weak Diameter Graph
Decomposition [19]

In [19], Linial and Saks presented a randomized distributed
algorithm for weak-diameter graph decomposition. We use
their algorithm to partition our original problem into sub-
problems that are solved locally. For a graph G = (V,E ),

with n = |V | nodes, and parameters p ∈ [0,1], and R ≥ 1,
their algorithm generates a subset of the nodes S ⊆ V , and
leaders l(u) for all u ∈ S such that

1) For all u ∈ S, dG(u, l(u))≤ R
2) If l(u) 6= l(v) then (u,v) 6∈ E
3) For all u ∈V (d), P[u ∈ S]≥ p(1− pR)n−1

In other words, the algorithm of Linial and Saks clusters
nodes and elects cluster-heads such that no node is of
distance greater than R from its cluster-head, and nodes
belonging to different clusters are of distance at least 2
away from each other. For the purposes of generating the
constraint cut set and decomposing the original problem
into sub-problems, each Gi is one of these clusters, C =
V (d)\

⋃
i Gi, and the sub-problem associated with each cluster

is solved by the cluster-head who then relays the solution
to the appropriate agents in his cluster. The algorithm is
summarized as follows:

Algorithm 2: Linial and Saks
input: G = (V,E )

1 foreach Node y ∈V do
2 Select ry according to

P[rx = j] = p j(1− p), j = 0, ...,R−1
P[rx = B] = pB

;
3 Broadcast (IDy,ry) to all vertices within distance ry;
4 Select vertex C(y) of highest ID from the

broadcasts it received (including itself);
5 Join the cluster if d(y,C(y))< rC(y);
6 end

E. Probabilistic Bounds on the Constraint Cut-Set

In phase I of the distributed algorithm, we proposed
generating the constraint cut-set using the algorithm of Linial
and Saks for weak-diameter graph decomposition [19]. The
algorithm takes p and R as parameters and guarantees that
for all u ∈V (d), the probability that u is in C̃ is greater than
or equal to p(1− pR)n−1, which implies that

P[u ∈C]≤ 1− p(1− pR)m−1.
Suppose we estimate |I(0)| ≤ I. We use the multiplicative
Chernoff bound to upper-bound the probability that |I(0)|> I,
which will upper-bound the probability that∥∥ΣAT

∥∥
1−λ

λ
r+1
∥∥∥∆

(k)
∥∥∥> εx

|I(0)|
for any given iteration.

Letting q = 1− p(1− pR)m−1, the Chernoff bounds says
that

P[|I(0)|> (1+δ )µ]<

(
eδ

(1+δ )(1+δ )

)µ

where µ = m ·q = m(1− p(1− pR)m−1). This expression can
be used to tune the parameter, p, used for partitioning the
problem, as well as assess the trade-off between the estimate
for |I(0)| versus the probability the algorithm succeeds. The
estimate for |I(0)|, whether it is high or low, will ultimately
determine the communication volume in the second phase.



F. Convergence Comparison to the Projected Subgradient
Method

To demonstrate that our algorithm exploits locality in a
way that black-box algorithms fail to do, we now evaluate the
convergence of the distributed projected subgradient method
on our problem.

The distributed subgradient method assumes an optimiza-
tion problem of the form

minimize
x ∈ RN

m

∑
i=1

fi(x)

subject to x ∈ χi

(21)

where each fi(x) and χi is only known by agent i, and
messages are passed over a fixed communication topology.
As this does not exactly match our problem statement,
we make several modifications which are summarized and
justified as follows.

In problem 1 we assumed that all agents know f (x),
and initially, only agent i knows A∗,i. After the initial
communication round, if v(p)

i ∈ S j then agent i knows A j,∗.
In the algorithm of Section IV, each dual variable is assigned
to a primal variable, who is then “responsible” for that
constraint. We also note that the distance metric proposed
in Section III evolves according to the geodesic distance
in Geff. Consequently, in order to most equitably compare
the convergence of the locality aware algorithm to the
distributed projected subgradient method, we simulate the
projected subgradient method on the dual variables with a
communication graph defined by Geff.

Fig. 5: Topology of Geff

We rewrite problem 1 in the form

minimize
x ∈ RN

(M−1)×(N−1)

∑
i=1

f (x)
(M−1)× (N−1)

subject to Ai,∗x = bi

(22)

to match the form of Equation (21). A fraction of f (x)
is included in each agents’ private objective function to
distribute processing of f (x), and speeds up convergence. We
also initialize each node with x(0) i.e., the subgradient method
is warm-started with the solution after the first phase of the
algorithm to compare convergence against that of the second
phase of our algorithm. The lazy Metropolis weighting given
by,

xk+1
i = xk

i = ∑
j=N k

i

1
2max{dk

i ,d
k
j}
(xk

j− xk
i )

is used for the consensus step for of its attractive convergence
properties. In matrix form, we write xk+1 = Lxk. We choose
step-sizes α(k) = α0√

k
based on the standard divergent series

rule, and vary α0 ∈ {0.03125,0.0625,0.125,0.250,0.5,1}

In the projected subgradient algorithm, every agents main-
tains and updates a copy of the global variable during
each iteration. Let xk

(i) denote the ith agent’s copy of the
global optimization variable at iteration k. The projected
subgradient updates are given by

xk+1
(i) = Πχi

(
∑

j
Li jxk

( j)−
α0√

k
gk
(i)

)
where χi := {x|Ai,∗x = bi}, and ΠS(x) is the orthogonal
projection of the point x on the set S.

We fixed the dimension of the global problem to be 10×10
, maximum sub-problem size to be 4×4, α = 1, and β = 3.
These parameters partition the global problem into 4 sub-
problems, and result in a locality parameter of

Figure 6 plots the convergence of the distributed subgra-
dient method from a warm-start obtained by solving the
sub-problems. Figure 7 plots convergence of phase two of
the locality-aware algorithm from the same starting value.
The locality-aware algorithm exhibits orders of magnitude
better performance than the subgradient method in terms
of convergence rate, which translates directly into massive
savings in communication cost.

Fig. 6: Convergence rate of the projected
subgradient algorithm for stepsizes α0 ∈
{0.03125,0.0625,0.125,0.250,0.5,1}

G. Scaling with Problem Size

We now show that for a specific instance of our example
problem, the locality parameter appears to asymptotically
approach a limit that is less that one. This is significant
because for problems of this form, it means that locality
remains bounded independently of problem size. In contrast,
we show that the convergence time of a distributed
subgradient method using lazy Metropolis weights scales
with the square of the number of nodes in the network.
This implies that the total messages passed needed for the
projected distributed subgradient method scales cubically
with the number of nodes in the network.

In particular, we fix α = 1 and β = 3, let ρN be the locality
parameter for the problem on a N×N grid. Figure 8 plots the
ρN against N2, the number of nodes in the network. Noteably,



Fig. 7: Convergence of phase two of the locality-aware
algorithm

we observe that ρN appears to asymptotically approach 0.43

Fig. 8: Scaling of locality parameter ρN

Let LN be the matrix encoding the lazy Metropolis update
on the N×N grid. Convergence of the distributed subgra-
dient method is dictated 1

1−γ(LN)
where γ(LN) is the second

largest singular value of LN . Specifically, we define the ε-
convergence time as the minimum T such that

f

(
∑

T−1
l=0 yl

T

)
− f (x∗)≤ ε

The ε convergence time can be upperbounded by

O

(
max((y0− x∗)4,C4 1

(1−γ(LN))2

ε2

)
where C is a universal bounding constant for∥∥∥∇

f (x)
m + 1

2 ‖Ai,∗x−bi‖2
∥∥∥ for all i [1]. Figure 9 shows

the scaling of 1
1−γ(LN)

with N2. Empirically, we found that
1

1−γ(LN)
scales approximately linearly with N2, and the

convergence rate approximately scales with N4. Note that
at each time step, every node passes a message to each one
of its neighbors, resulting in a total of O(N6) messages
passed.

H. Discussion
As noted in Section IV, it is not strictly necessary to use

a leader based algorithm for the first phase of the locality-
aware algorithm. After partitioning, we could instead use

Fig. 9: Scaling of 1
1−γ(LN)

a subgradient method. If we partition the original N ×N
problem into M×M evenly sized sub-problems, each sub-
problem has size N

M ×
N
M . Based on the scaling results of

this section, the total number of messages passed in the first

phase would scale with M2
(

N2

M2

)3
= N6

M4 . We can expect
communication volume in the second phase to scale as a
function of the number of constraints cut in the first phase;
approximately 2NM constraints are cut, and only nodes
associated with the cut dual variables communicate within
their coordination radius. Consequently, the communication
volumne in the second phase scales approximately with
(NM)2. A quick back of the envelope calculation shows that
if we choose M ∝ N

2
3 , total communication volume for both

phases scales with N
10
3 , which is a dramatic improvement

over a naive implementation of the subgradient method. We
note that this improvement factor is problem dependent and
a direct consequence of the structure of the constraints and
objective function


