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On Local Computation for Network-Structured Convex Optimization
in Multi-Agent Systems

Robin Brown1, Federico Rossi2, Kiril Solovey1, Matthew Tsao1, Michael T. Wolf2, and Marco Pavone1

Abstract—A number of prototypical optimization problems
in multi-agent systems (e.g., task allocation and network load-
sharing) exhibit a highly local structure: that is, each agent’s
decision variables are only directly coupled to few other agent’s
variables through the objective function or the constraints. In this
paper, we develop a rigorous notion of “locality” that quantifies
the degree to which agents can compute their portion of the
global solution of such a distributed optimization problem based
solely on information in their local neighborhood. We build upon
the results of Rebeschini and Tatikonda (2019) to develop a more
general theory of locality that fully captures the importance of
problem data to individual solution components, as opposed to a
theory that only captures response to perturbations. This analysis
provides a theoretical basis for a rather simple algorithm in which
agents individually solve a truncated sub-problem of the global
problem, where the size of the sub-problem used depends on
the locality of the problem, and the desired accuracy. Numerical
results show that the proposed theoretical bounds are remarkably
tight for well-conditioned problems.

I. INTRODUCTION

Many problems in the control of network systems are
naturally posed as network-structured, distributed optimiza-
tion problems, where knowledge of the cost function and
constraints is distributed among agents, and the numerical
structure of the optimization closely reflects the physical struc-
ture of the network. Examples of such settings are resource
management in smart grids [1], state-estimation in power
networks [2], distributed model predictive control, and network
utility maximization [3]. Accordingly, efficient optimization
algorithms are a critical sub-routine for the control of large-
scale network systems.

Concerns about communication overhead, privacy, and ro-
bustness in such settings have motivated the need for dis-
tributed solution algorithms that avoid centrally gathering all
of the problem data. This is often abstracted as a prominent
setting in the literature on distributed optimization where the
objective function is the sum of privately known functions, and
agents must reach a consensus on the optimal decision variable
despite limited inter-agent communication. We refer the reader
to [4] for a recent survey on distributed optimization.

Related Work: Many existing distributed optimization
algorithms leverage consensus as a core building block and,
broadly speaking, can be abstracted as the interleaving of
descent steps, to drive the solution to the optimum, and
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averaging of information from neighbors, to enforce consis-
tency. The main features differentiating these algorithms from
each other are the centralized algorithm from which they are
derived, and details regarding the communication structure
such as synchronous/asynchronous, and directed/undirected
communication links, with the broad overarching categories
being (sub)gradient [5], [6], (sub)gradient push [7], [8], dual-
averaging [9], [10], and second-order schemes [11], [12].

For many practical settings, seeking consensus as the end
goal accurately represents the objective; for instance, in ren-
dezvous and flocking, all the agents’ actions depend on a
global decision variable (meeting time and location for the
former, and speed and heading for the latter). However, when
the global decision variable represents a concatenation of
individual actions, the network can still act optimally without
ever coming to a consensus. Consider, for example, a task
allocation problem where each agent only needs to know
what tasks are assigned to itself, and is not concerned with
other agents’ assignments. The present paper is focused on
the latter class. While problems of this form can be solved
using algorithms that enforce full-state consensus, this would
result in poor scalability due to the excessive redundancy of
shared information and the overhead of consensus.

A number of recent works circumvent the inefficiencies
of full-state consensus by only sharing subsets of the primal
variables [13], and/or exploiting structure in the dual problem
[14], [15], [16], [17]. Of these, [17] considers the problem
setting most similar to ours, by considering block separable
objectives, and explicitly modeling the structure of the con-
straints. The authors of [17] develop a proximal primal-dual
distributed algorithm meant to explicitly exploit the sparsity
and structure of the constraint, and demonstrate that algorithms
that ignore sparsity structure, regardless of whether it is present
in the problem, are doomed to poor scalability.

Another body of work closely aligned with the spirit of
this paper, are those that trade-off communication and com-
putation. [18] considered a setting where a set of distributed
processors must collectively converge on the minimizer of the
sum of privately known objective functions. They showed that
in a variant of the distributed dual averaging algorithm, by
communicating less and less frequently as the computation
progresses they could improve convergence rate, allowing for
improvements in both communication and computation com-
plexity. In contrast, [19] considered schemes where multiple
communication rounds are carried out in between each com-
putation round. However, for nearly all practical applications,
communication is far more costly than computation, both in
terms of time and energy usage. Consequently, in this paper,
we focus on reducing communication rounds.

Critically, all of the surveyed approaches fail to address
whether the communication complexity is an artifact of the
optimization procedure, or implies a fundamental limit on
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the amount of communication exchange necessary to solve
network-structured optimization problems. Many problems
may simply require intense, network-wide coordination to
solve. On the other hand, there are problems that can be
solved with only a limited view of the network. In order to
design robotic networks that scale gracefully with the number
of agents, it is paramount that we identify problems in this
latter class, and exploit their locality as much as possible. In
other words, ensure that communication is kept at the bare
minimum necessary to solve the problem at hand. To this end,
we ask a different question: how well agents can compute their
portion of the global solution based solely on information in
their local neighborhood?

Our approach builds on the work of Rebeschini and
Tatikonda [20], who introduced a notion of “correlation”
among variables in network optimization problems. The au-
thors in [20] characterize the “locality” of network-flow
problems, and show that the notion of locality can be applied to
develop computationally-efficient algorithms for “warm-start”
optimization, i.e., re-optimizing after the problem is perturbed.

Our approach in this paper also draws influence from the
field of local computation, a sub-field of theoretical computer
science. Motivated by the common threads in problems such
as locally decodable codes, and decompression algorithms,
Rubinfeld et al. [21] proposed a unifying framework of Local
Computation Algorithms (LCAs). LCAs formalize the intu-
ition that, in problems with large inputs and outputs, if only a
small subset of the output is needed, it is inefficient to compute
the entire output and simply read off the component required.
Instead, both computation and access to the input should be
kept to a minimum such that the required output is obtained
and is consistent with subsequent queries.

Statement of Contribution1: We develop a theoretical
basis for the local-computation paradigm applied to convex
optimization problems in multi-agent systems. Specifically,
given the objective of computing x∗i , a single component of the
optimal decision variable, we characterize the error incurred
by truncating the optimization problem to a neighborhood
“around” xi, a single component of the decision variable.
We show that for all linearly-constrained strongly-convex
optimization problems, this error decays exponentially with
the size of the neighborhood at a rate dependent on the
conditioning of the problem. This rate, which we coin as
the “locality” of a problem, naturally characterizes the trade-
off between the amount of local knowledge available to an
agent, and the quality of its approximation. The condition
number of a problem, colloquially referred to as a metric of
how “well-behaved” a problem is, unsurprisingly, correlated
with the locality of a problem. Our findings give a theoretical
basis for a rather simple algorithm, in which agents simply
solve truncated sub-problems of the global problem. Our
numerical results, obtained by using this algorithm, show that
the tightness of the theoretical bounds also depend on the
condition number of the problem, with the bounds being near-
optimal for well-conditioned problems.

Organization: In Section II, we introduce notation, termi-
nology, and technical assumptions about the problem. In Sec-

1A preliminary version of this work was accepted at the 2020 European
Control Conference [22]. This paper extends prior results by providing tighter
bounds on the locality of problems, and extending the decay results to all
linearly-constrained strongly-convex optimization problems.

TABLE I: List of repeatedly used notation
Symbol Description

V (p) Set of primal variables
V (d) Set of dual variables
CS Set of constraints that only involve variables in S
CS Set of constraints that involve any of the variables in S
S j Set of primal variables participating in the jth constraint

x(S) Solution to the local sub-problem induced by S
Gdec Graph of decision variables that appear in the same constraint
Gcon Graph of constraints that share primal variables
Gopt Graph of connections between primal and dual variables

tion III, we provide the problem statement, which establishes
the fundamental question of locality, and summarize the main
result, which provides a problem-specific bound on the rate
of locality. We also summarize the key intermediary results,
and discuss the algorithmic implications of locality in terms
of the communication and message complexity it implies. We
conclude the section with detailed discussion of the major
advantages and deficiencies of our method compared to other
methods. Proof sketches of the main results are reported in
Section IV. In Section V, we provide numerical experiments
that highlight both scenarios where our theoretical bounds
are tight, and those where our bounds are conservative. We
conclude and highlight future directions in Section VI.

II. NOTATION AND ASSUMPTIONS

We let [N] denote the 1−N indices, and ei the canonical
ith basis vector. For a matrix A, Ai j denotes the element in
position (i, j). Similarly, Ai,∗ and A∗, j denote the ith row and
jth column of A, respectively. Let AT be the transpose, and
A−1 be the inverse. Given subsets I ⊆ M, J ⊆ N, let AI,J ∈
R|I|×|J| denotes the submatrix of A given by the rows in I
and columns in J. Similarly, A−I,−J denotes the submatrix
of A obtained by removing rows I and columns J. We let
σmax(A) and λmax(A) denote the maximum singular values
and eigenvalues of A, respectively (σmin(A) and λmin(A) the
minimums), and κ(A) = |λmax(A)|

|λmin(A)|
the condition number. The

difference between sets, S1 \ S2 = {s ∈ S1 | s 6∈ S2} is the set
of elements in S1 but not S2.

Throughout this paper, we will consider linearly-constrained
separable convex optimization problems of the form:

minimize
x ∈ RN

f (x) = ∑
i

fi(xi)

subject to Ax = b.
(1)

We assume that A ∈ RM×N is full row rank, and that each
function fi : R→R is L-smooth, µ-strongly convex, and twice
continuously differentiable. We let V (p) = [N] denote the set
of primal variables, V (d) = [M] the set of dual variables, and
S j = {i∈V (p)|A ji 6= 0} the set of primal variables participating
in the jth constraint. For any subset of the primal variable,
S⊆V (p), we also define the following set of constraints

CS := {i ∈ [M] | if j 6∈ S then Ai j = 0}, (2)
CS := {i ∈ [M] | Ai j 6= 0 for some j ∈ S}. (3)

Intuitively, CS is the set of constraints that only involve
variables in S, and CS is the set of constraints that involve
any of the variables in S. Throughout this paper, we fix
the objective function f and the constraint matrix A, and
write x∗(b) as a function of the constraint vector, b. We
define an undirected graph G = (V,E) by its vertex set V
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and edge set E, where elements (i, j) ∈ E are unordered
tuples with i, j ∈ V . We define the graph distance dG(i, j)
to be the length of the shortest path between vertices i and
j in graph G, and N G

k (i) = { j ∈ V | dG(i, j) ≤ k} (termed
the “k-hop neighborhood”) around vertex i in graph G for
a given k ∈ N>0. We define the following undirected graphs
representing coupling in the optimization problem:

• Gdec = (V (p), Edec(x)), with Edec = {(v(p)
i ,v(p)

j ) |
v(p)

i ,v(p)
j ∈V (p), Aki 6= 0, Ak j 6= 0 for some k}. Informally,

Gdec encodes the decision variables that appear in the
same constraint.

• Gcon = (V (d), Econ), with Econ = {(i, j) | [AAT ]i j 6= 0}.
Informally, Gcon encodes connections between the con-
straints through shared primal variables.

• Gopt = (V (p) ∪V (d), Eopt(x)), with Eopt = {(v(p)
j ,v(d)i ) |

Ai j 6= 0}. Informally, Gopt encodes the dependence struc-
ture of the optimization problem.2

III. FOUNDATIONS OF LOCALITY, AND THEIR
ALGORITHMIC IMPLICATIONS

A. Problem Statement

We consider a network of N agents collectively solving the
following linearly-constrained optimization problem

minimize
x ∈ RN

f (x) = ∑
i

fi(xi)

subject to Ax = b,
(4)

where knowledge of the constraints is distributed, and the
decision variable represents a concatenation of the decisions
of individual agents. Specifically, we assume that f j and A∗ j
are initially known by agent j only, and agent j knows bi if
Ai j 6= 0. As a motivating example, consider a scenario where a
fleet of agents needs to collectively complete tasks at various
locations, while minimizing the cost of completing such tasks.
In this setting, the constraints ensure completion of the tasks,
while the entries Ai j of the constraint matrix may encode
the portion of task i that agent j can complete, or efficiency
when completing tasks, thus, constituting private knowledge.
We refer the reader to Section V for additional examples.

We consider the problem to be solved when each agent j
knows x∗j , i.e, we do not require every agent to know the entire
decision variable. With some abuse of notation, we conflate
each agent with its associated primal variable.3

Our objective in this paper is to characterize the accuracy
with which an agent i can compute its associated solution xi
component given access to problem data held by agents within
a k-hop neighborhood of itself in Gdec, for a given k∈N>0. On
the communication graph given by Gdec, obtaining this infor-
mation requires k communication rounds of accumulating and
passing problem data between neighbors. Consequently, our

2Without loss of generality, we assume Gopt is fully connected (otherwise
each connected component of Gopt can be treated independently). As a
consequence, Gdec must be fully connected as well.

3While, in this paper, each agent is only associated with a scalar variable
for illustrative purposes, one can readily extend the results in this paper to
the setting where each agent is associated with a vector, by stacking each
of the agents’ variables into a single global variable. Additionally, the case
where multiple agents’ actions depend on shared variables can be addressed
by creating local copies of those variables and enforcing consistency between
agents who share that variable through a coupling constraint. We direct the
reader to Section V for concrete examples of both generalizations.

results also characterize the trade-off between communication
and approximation accuracy in this setting.4

B. Foundations of Locality
For each xi, we consider sub-problems induced by restrict-

ing Problem (4) to variables within the k-hop neighborhood
around xi and constraints only involving those variables (the
“k-hop local sub-problems”). The main result of this paper
states that the error in the ith component of the k-hop
“local solution” decays exponentially with the size of the
neighborhood— a formal statement is provided below.

Theorem III.1 (Locality). Let x(k) be the solution to the
optimization problem induced by restricting Problem 4 to k-
hop neighborhood around xi, N (dec)

k (i), and the constraints

only involving those variables. If λ = supx

√
κ(x)−1√
κ(x)+1

, where

κ(x) denotes the condition number of A[∇2 f (x)]−1AT , then
|x(k)i − x∗i | ≤Cλ

k (5)

for C = 2
(

1+
√

L
µ

)
σmax(A)
σ2

min(A)

∥∥b−Ax∗UC

∥∥
2. 5

The rate λ characterizes the degree to which local informa-
tion is sufficient to approximate individual components of the
global optimum, thus justifying it as a metric of “locality”.
The proof of Theorem III.1 relies on two intermediary results.

Remark. The definition of C may appear slightly unusual
because the term σmax(A)

σ2
min(A)

is not scale-invariant i.e., σmax(cA)
σ2

min(cA)
=

σmax(A)
|c|σ2

min(A)
. This is remedied by the fact that any constant rescal-

ing of A and b will rescale
∥∥b−Ax∗UC

∥∥
2 as well. Consequently,

for all c ∈ R,
σmax(A)
σ2

min(A)
‖b−Ax∗UC‖2 =

σmax(cA)
σ2

min(cA)
‖cb− cAx∗UC‖2 . (6)

Our first intermediary result derives the relationship between
solutions to the local sub-problems and the true solution to
Problem (4) (the “global problem”). Specifically, we show
that the solution to a local sub-problem is consistent with
that of a perturbed version of the global problem (where the
perturbation appears in the constraint vector, b).

Theorem III.2 (Relationship between local sub-problems and
the global problem). Let S ⊆ V (p) be a subset of the primal
variables. If x(S) is the solution to the problem obtained by
restricting Problem (4) to the variables in S and constraints
only involving those variables, i.e.,

x(S) = arg min
x(S) ∈ R|S|

∑
i∈S

fi

(
x(S)i

)
,

subject to ACs,Sx(S) = bCs ,

(7)

then there exists b̂ ∈ RM such that x(S) =
[
x∗(b̂)

]
S.

The importance of Theorem III.2 lies in the fact that we
can interpret solving local sub-problems as solving perturbed

4This communication graph should not be seen prescriptive, but rather one
that facilitates ready analysis of the implications of locality with regard to
communication.

5Given further restrictions on A and f , these bounds can be expressed in
terms of spectral graph theoretic measures. For example, [20] consider the
case where A is an incidence matrix, and relate

(
A[∇2 f (x)]−1AT )−1 to the

second largest eigenvalue of the diffusion random walk. It is likely that similar
results can be obtained when A is an adjacency matrix or unsigned incidence
matrix.



4

versions of the global problem. This interpretation allows us to
leverage theory on the sensitivity of optimal points of Problem
(4) to characterize the error incurred by only using a subset
of the original problem data.

Our second intermediary result characterizes the
component-wise magnitudes of this correction factor.
Specifically, we show that when the constraint vector of
Problem 4 is perturbed, the impact of the perturbation decays
exponentially with distance to the perturbation.

Theorem III.3 (Decay in sensitivity of optimal points). Let λ

be defined as in Theorem III.1. Then for any perturbation in
the constraint vector, ∆ ∈ RM , subset of the primal variables,
S⊆V (p), and C =

2‖∆‖2
σmin(A)

,

‖[x∗(b+∆)− x∗(b)]S‖2 ≤Cλ
d(S,supp(∆)), (8)

where d(S,supp(∆)) is a distance between primal variables
and dual variables that characterizes the indirect path through
coupling in the constraints, by which a perturbation in the con-
straint propagates to primal variables. For sake of readability,
the precise definition is deferred until Section IV-B.

Intuitively, this theorem states that a perturbation in the
constraints affects the decision variables “closest” to the
constraint the most, i.e., those involved in the constraint,
while the effect of the perturbation decays with the degrees of
separation between a decision variable and the constraint. The
construction of the k-hop local sub-problems takes advantage
of this theorem by forcing the “perturbation” to be at a distance
of at least k from component xi. Theorem III.1 is derived from
the intermediary results by bounding the perturbations induced
by cutting constraints.

C. Algorithmic Implications
The characterization of locality naturally suggests a means

of reducing the communication necessary for distributed op-
timization. In a radical departure from much of the existing
work on distributed optimization, which rely on propagating
information throughout the network, we suggest localizing
information flow. Our results show that the importance of
problem data to individual solution components decays with
distance to the data. Consequently, if a problem exhibits
sufficient locality, by restricting information flow to where it
matters most, we can avoid the high communication overhead
of flooding methods with little impact on solution quality.

The objective is for each agent to compute its own compo-
nent of the solution vector, i.e., for agent i to compute x∗i . We
denote by x̂i agent i’s estimate of x∗i and we let x̂= (x̂1, . . . , x̂N)
be the aggregation of privately known solution components.
Because we allow the approximation to violate constraints,
the typical metric of sub-optimality in the objective function
is uninformative—the approximation generated is guaranteed
to have an objective value no larger than the true optimum.
Consequently, we will measure the accuracy of our solution by
‖x̂− x∗‖∞

—this bound readily translates into bounds on both
the objective value and constraint violation as well.

The locality-aware distributed optimization algorithm is
conceptually simple. Leveraging locality, we conclude that
each agent can compute its component of the solution by
solving a local sub-problem of the global problem, where
the size of the local sub-problem depends on the accuracy
desired and the locality of the problem. Agents aggregate

local problem data through a recursive flooding scheme, which
is truncated after a predetermined number of communication
rounds. Then, each agent solves its own local problem without
further communication with the network. Specifically, agent
i starts with its local objective function, fi, its associated
column of the constraint matrix A∗,i, and components of the
constraint vector bCi

. In the initialization phase, agent i sends
ACi,i to each of its neighbors. After the initialization phase,
agent i has full knowledge of ACi,∗, i.e., the constraints that
it participates in. Then, in the first iteration, agent i sends a
representation of ACi,∗, bCi

and fi to each of its neighbors.
In subsequent iterations, each agent sends a representation of
all of the information it has previously received to each of its
neighbors. After the k’th iteration, for k ∈ [K], agent i has a
representation of f j, bC j

and AC j ,∗ for all j ∈N (i,k), where
N (i,k) denotes the k-hop neighbors of agent i. After the K
communication rounds, agent i generates its local sub-problem
by ignoring any constraints involving variable outside of its
K-hop neighborhood, N (i,K). The algorithm for agent i is
summarized in Algorithm 1.

Algorithm 1: Locality-Aware Distributed Optimization
input : fi, A∗,i, bCi

, K
1 Initialization: Send ACi

, i to all j ∈N (i,1);
2 for k = 1, . . . ,K do
3 Send { fl , ACl ,∗, bCl

}l∈N (i,k−1) to all j ∈N (i,1);
4 end
5 Solve

x(N (i,K)) = arg min
x ∈ R|N (i,K)|

∑
j∈N (i,K)

f j(x j)

s.t. ACN (i,K),N (i,K)x = bCN (i,K)

(9)

;
output: x̂i = x(N (i,K))

i

D. Discussion
It follows directly from the locality analysis in Theo-

rem III.1 that an accuracy of ‖x̂− x∗‖∞
≤ ε requires

K ≥ 1
1−λ

log
(

C
ε

)
(10)

communication rounds. This bound not only determines how
to select the number of communication rounds (passed in
as a hyperparameter), but provides guidance in determining
whether the locality-aware algorithm is suitable for a particular
setting. If K is greater than the radius of the network, at least
one node has accumulated the entirety of the problem data—in
such settings, the locality-aware algorithm may not be suitable.
Generally, the locality-aware algorithm offers an advantage in
scenarios where the locality parameter, λ , is sufficiently small.

In contrast to algorithms where estimates of the primal
or dual solutions are passed between agents, the size of the
messages grows with the number of agents in each expanding
neighborhood. Explicitly, if each local function can be fully
represented by B bits, a message representing { fi, ACi,∗, bCi}
requires on the order of O(B + maxi |Si| ×max j |C j|) bits.
Because |N (i,k− 1)| ≤ (maxi |Si|×max j |C j|)k−1, the mes-
sage size during the kth communication round is bounded by
O
(
(maxi |Si|×max j |C j|)k

)
bits.

Notably, both the number of communication rounds and the
message complexity of the locality-aware algorithm do not



5

directly depend on the number of nodes in the network. In
contrast, algorithms that enforce full-state consensus requires
each node to send messages of size O(N) at every iteration.
Moreover, the number of iterations to convergence of such
methods tend to scale with the number of nodes in the network
(depending on network topology) [4]. While the message com-
plexity of the locality-aware algorithm grows rapidly between
iterations, when A is sparse, |Si| � N and |Ci| � M. This
indicates that the locality-aware algorithm offers a significant
advantage in settings where |Si| and |Ci| remain bounded as
N and M are increased, i.e., those where a bounded number
of agents participate in constraints, and agents participate in a
bounded number of constraints regardless of network size.

A shortcoming of Algorithm 1 is that problem data is
explicitly shared between agents. At present, its application
is limited to settings where preserving the privacy of individ-
ual objective functions and constraint sets is not a concern.
However, the scalability of the locality-sensitive algorithm
motivates extending these ideas to design algorithms that
exploit locality without explicitly sharing problem data, and
we highlight this as a promising future direction.

IV. PROOFS OF MAIN RESULTS

In this section, we provide proof sketches of the main results
summarized in Section III. First, in Section IV-A, we derive
the relationship between the true solution to Problem (4) (the
“global problem”) and the solution to the problem obtained
by restricting Problem (4) to a subset of the variables and
the constraints only involving those variables (the “local sub-
problem”). Explicitly, we show that the solution of the local
sub-problem is consistent with the solution of a perturbed
version of the global problem. This then allows us to leverage
the sensitivity of optimal points to derive an expression for the
difference between the solution to the local sub-problem and
the solution to the global problem (the “correction factor”).

Second, in Section IV-B, we show that the correction factor
derived in Section IV-A yields a numerical structure that
reflects the underlying structure of the constraints. Specifically,
we show that, while the correction factor will typically be
dense, it admits sparse approximations that reflect the sparsity
of the constraints. We leverage the guarantees of the Conjugate
Residual algorithm to derive, a priori, both the sparsity pattern
and a bound on the accuracy of the approximation. This
approach will allow us to identify which elements of a local
solution will be unaffected if a sparse approximation of the
correction factor is used. Finally, in Section IV-C, we use
the results of the previous sub-sections to characterize the
relationship between the quantity of problem data used, and
the error in individual components. This will naturally give
rise to the metric of locality λ , which we formally present at
the end of the section.

A. Relating local sub-problems to the global problem

In this section, we consider sub-problems generated by
restricting Problem (4) to a subset of the primal variables and
the constraints only involving those variables. In particular, if
S⊆V (p) is a subset of the primal variables, we define the local
sub-problem induced by S as:

x(S)(b) = arg min
x(S) ∈ R|S|

∑
i∈S

fi(x
(S)
i )

subject to ACs,Sx(S) = bCs .

(11)

Our objective in this section is to relate the value of x(S) to
[x∗(b)]S, the components S of the global optimum, allowing
us to characterize the error in x(S).

We first show that augmenting the local sub-problem with
the remaining variables does not change the solution to the lo-
cal sub-problem. By computing the optimal unconstrained val-
ues for cut variables, we can derive the global constraint vector
b̂ that induces the same value on S, i.e., x(S) =

[
x∗(b̂)

]
S. This

insight is key for making the connection between the “warm-
start” scenario presented in [20] (computing x∗(b) given the
solution to x∗(b+ p)) to the “cold-start” scenario considered in
this paper (computing x∗(b) without prior knowledge of other
optimal solutions). This allows us to develop a more general
theory of locality that fully captures the importance of problem
data to individual solution components, as opposed to a theory
that only captures response to perturbations.

In the following lemma, we show that if the local-sub-
problems are augmented with the remaining variables, the
solution on the k-hop neighborhood does not change.

Lemma IV.1. [Augmenting the local sub-problems] Let x(S)

be the solution to the local sub-problem induced by S, and

x̂(S)(b) = arg min
x ∈ RN

N

∑
i=1

fi(xi)

subject to ACs,Sx = bCs .

(12)

is the solution to the problem including the entire objective
function, but only the constraints of the local sub-problem,
then x(S)(b) =

[
x̂(S)(b)

]
S
.

Proof. This lemma follows from observing that the variables
in V (p) \ S are entirely unconstrained, and can be optimized
independently from those in S.

By computing the values that the constraints in V (d) \Cs
take on without being enforced, we can derive a constraint
vector b̂ that induces the same optimal solution as the local
sub-problem.

Lemma IV.2 (Implicit Constraints). Let x̂(S) be defined as in
Lemma IV.1, and b̂ = Ax̂(S). Then,

x̂(S) = arg min
x ∈ RN

f (x)

subject to Ax = b̂.
(13)

Proof sketch. The result follows by showing that the feasible
set of Problem (13) is a subset of the feasible set of Problem
(12).

Lemma IV.2 allows us interpret solving the local sub-
problem as solving a perturbed version of the global problem
where b is replaced by b̂. This interpretation allows us to
leverage the theory developed by Rebeschini and Tatikonda
[20] on the sensitivity of optimal points of Problem (4) to finite
perturbations in the constraint vector, b, to relate the solution
of the local sub-problem to that of the global problem. The
main theorem of [20] is reviewed below.
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Theorem IV.3 (Sensitivity of Optimal Points - Theorem 1
of [20]). Let f : RN → R be strongly convex and twice
continuously differentiable, and A∈RM×N have full row rank.
For b ∈ Im(A), let Σ(x∗(b)) := ∇2 f (x∗(b))−1 . Then x∗(b) is
continuously differentiable at all b ∈ Rm, and

dx∗(b)
db

= D(b) = Σ(x∗(b))AT (AΣ(x∗(b))AT )−1. (14)

The above theorem relates the gradient of the optimal
solution, x∗(b), to the constraint matrix and the objective func-
tion. Critically, Equation (14) holds globally, allowing us to
apply the Fundamental Theorem of Calculus to determine the
correction factor necessary to correct for finite perturbations
in the constraint vector. Precisely, if we let ∆ = b− b̂, the
correction factor can be expressed as

x∗(b̂+∆)−x∗(b̂) =
(∫ 1

0
Σ(xθ )AT (AΣ(xθ )AT )−1dθ

)
∆, (15)

where xθ := x∗(b̂+θ∆). Consequently, the error in the local
solution is precisely this correction factor.

B. Component-wise Sensitivity
In the previous section, we gave a closed-form expression

for the error in the solution of the local sub-problem. In
this section, we show how the underlying structure of the
optimization problem is reflected in the numerical structure of
this error. In particular, we leverage the Conjugate Residuals
algorithm [23] to generate a sequence of sparse approxima-
tions that converge exponentially to the true correction factor
while maintaining sparsity patterns that reflect the underlying
graph structure of the optimization problem. We establish that
a perturbation in the constraints affects the decision variables
“closest” to the constraint the most, while the effect of the
perturbation decays with the degrees of separation between a
decision variable and the constraint. Moreover, we derive an
a priori bound on the rate of decay.

In the remainder of this section, we will analyze the
instantaneous sensitivity of the optimal point

dx∗(b)
db

∆ = D(b)∆ = Σ(x∗(b))AT (AΣ(x∗(b))AT )−1
∆.

In Section IV-C, when we formally define our metric of
locality, the results developed in this section will naturally
extend to finite perturbations in the constraint vector. For ease
of notation, we let Σ = Σ(x∗(b)).

The instantaneous sensitivity expression will allow us to
reason about the structural coupling between components of
Problem (4), however, the term (AΣAT )−1 will require careful
treatment, as the inverse of sparse matrices is typically dense.
While the structure of AΣAT is obfuscated when we take
the inverse, it is not lost. The insight that allows us to
recover the original structure of the problem in the sensitivity
expression is that the Conjugate Residuals algorithm can be
leveraged to generate structure-preserving sparse approxima-
tions to δ := (AΣAT )−1∆. We now provide a cursory overview
of the algorithm and relevant guarantees [23, 6.8]6.

a) Conjugate Residuals: For ease of notation, let M =
AΣAT . Conjugate residuals (CR) is an iterative Krylov method
for generating solutions to linear systems, Mδ = ∆. The
algorithm recursively generates a sequence of iterates, δ (k)

where each δ (k) minimizes the norm of the residuals, ‖rk‖ :=

6We adapt the results from [23] slightly because AΣAT is normal.

∥∥∥∆−Mδ (k)
∥∥∥

2
, in the kth Krylov subspace. The guarantees of

the algorithm that we will leverage are as follows.
1) Sparsity:

δ (k) ∈K (M,∆,k) := span{∆, M∆, M2∆, . . . ,Mk−1∆}.
2) Convergence rate:

‖rk‖2 ≤ 2
(√

κ−1√
κ +1

)k

‖r0‖2 = 2
(√

κ−1√
κ +1

)k

‖∆‖2 .

The first guarantee will allow us to derive the support of each
δ (k), which reflects the underlying structure of the problem.
The second will allow us to bound the rate with which the
effect of a perturbation decays with each degree of separation.

b) Support of the estimates:

Theorem IV.4 (Sparsity Structure of Matrix Powers). For k ∈
Z+, neglecting numerical cancellation7,

supp((AΣAT )k) = {(i, j) | dGcon(vi,v j)≤ k}. (16)

This theorem establishes that the sparsity pattern of a
symmetric matrix to the kth power is determined by the k-hop
neighbors in the graph representing the sparsity pattern of the
original matrix. This allows us the characterize the sparsity
pattern of each of the generating vectors of the kth Krylov
subspace generated by AΣAT and ∆.

Corollary IV.4.1 (Sparsity Structure of the Sensitivity Expres-
sion). For k ∈ Z+ and i ∈ [M]

supp
(

Σ(x)AT
δ
(k)ei

)
⊆N

Gopt
1 (N Gcon

k−1 (i)). (17)

Informally, N
Gopt

1 (N Gcon
k−1 (i)) represents the components

of ΣAT δ (k)ei that can be deduced to be nonzero based on
combinatorial analysis of each of its composing terms. The
consequence of Corollary IV.4.1 is that if we take ΣAT δ (k) as
an approximation to ΣAT (AΣAT )−1∆, we know which compo-
nents of the approximation are guaranteed to be zero, i.e., are
invariant to locally supported perturbations in the constraint
vector. Based on the previous theorem and its corollary, we
define a measure of distance between primal variables and dual
variables that characterizes the indirect path, through coupling
in the constraints, by which a perturbation in the constraint
propagates to primal variables,

d(v(p)
i ,v(d)j ) := min{k | i ∈N

Gopt
1 (N Gcon

k−1 ( j))}. (18)
We also define the distance between sets of primal and dual
variables as

d(I,J) = min{d(v(p)
i ,v(d)j )|v(p)

i ∈ I,v(d)j ∈ J}.
c) Component-wise sensitivity: We will now show that

the previous result along with the convergence guarantees of
CR can be used to infer the component-wise magnitudes of
the sensitivity expression. We will ultimately conclude that
these magnitudes decay exponentially with rate

√
κ−1√
κ+1 with

the degrees of separation between a component of x, and the
support of ∆, where κ is the condition number of AΣAT .

Theorem IV.5 (Decay in Sensitivity). The component-wise
magnitudes of the sensitivity expression can be bounded as

‖[D(b)∆]S‖2 ≤C
(√

κ−1√
κ +1

)d(S,supp(∆))

, (19)

7When characterizing the sparsity pattern of a matrix, “numerical cancel-
lation” refers to entries that are zeroed out due to the values of the matrix
entries, and cannot be deduced to be zero from the combinatorial structure of
the matrix alone.
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where C =
2‖∆‖2

σmin(A)
, and κ =

λmax(AΣAT )

λmin(AΣAT )
.

Proof sketch. We consider {δ (k)}, the sequence of estimates
of (AΣAT )−1∆ generated via CR, and {ΣAT δ (k)}, the corre-
sponding sparse estimates of the sensitivity expression. The
convergence guarantees of the CR iterates allow us to bound
the error in each ΣAT δ (k), while their sparsity allows us to
deduce the components of ΣAT δ (k) that are zero. The insight
that we leverage is that if

∥∥∥ΣAT
(
(AΣAT )−1∆−δ (k)

)∥∥∥≤ ε and[
ΣAT δ (k)

]
i
= 0, then |

[
ΣAT

(
(AΣAT

)−1
∆

]
i
| ≤ ε

Theorem IV.5 states that components that are “closest” to
the perturbation, i.e., those that participate in the constraints,
are most sensitive to the perturbation, and the sensitivity of
components decay exponentially according to their degree of
separation from the perturbation. Moreover, the decay rate can
be bounded by

√
κ−1√
κ+1 . Theorem IV.5 can be readily extended

to bound the effect that perturbations in the constraint vector,
b, have on individual components of the correction factor.

Corollary IV.5.1 (Decay in Error). If λ ≥
√

κ(x)−1√
κ(x)+1

for all x,

then for C =
2‖∆‖2

σmin(A)
,∥∥[x∗(b̂+∆)− x∗(b̂)

]
S

∥∥
2 ≤Cλ

d(S,supp(∆)). (20)

Proof sketch. The proof of this theorem proceeds by plugging
the bound of Theorem IV.5 into Equation (14).

Corollary IV.5.1 extends the results of Theorem IV.5 to
establish that the magnitude of the correction factor decays
with distance to the perturbation. The authors of [20] charac-
terized a similar decay bound for network flow problems, and
demonstrated the potential of such a bound in the context of
warm-start optimization. This decay bound extends their re-
sults to all linearly-constrained convex optimization problems,
and improves on our previous results derived from the infinite
series expansion of the sensitivity expression [22].

C. Putting it all together
We now have the technical machinery necessary to establish

a notion of locality. In this section, we restrict our attention to
local sub-problems induced by a k-hop neighborhood around
xi in Gdec. To lighten notation, we let x(k) denote the solution
to the local sub-problem induced by the k-hop neighborhood

around i (denoted by x

(
N

Gdec
k (i)

)
i previously). In this section,

we find constants C and λ such that
|x(k)i − x∗i | ≤Cλ

k.

In other words, we will show that the error in component
i decays exponentially according to rate λ with the size of
neighborhood generating the local sub-problem. The rate λ

naturally characterizes the degree to which local information
is sufficient to compute a single component of the global
optimum, ultimately, becoming our metric of “locality”.

We proceed by leveraging the results of Section IV-A to
characterize the error on each of the local sub-problems in
terms of the implicit constraints, b̂(k). We will then apply the
results derived in Section IV-B to bound the error induced
at component xi. The key difficulty resolved in this section
stems from the fact that we want to avoid solving for the

implicit constraints (which would require using the entirety of
the problem, thus defeating the purpose of locality!)—this is
akin to applying Corollary IV.5.1 without knowing ∆.

While we generally cannot control the value of the implicit
constraints, b̂(k), the construction of the local sub-problems
guarantees that the distance from i to the cut constraints is
at least k, i.e., d(i,supp(∆(k))) ≥ k where ∆(k) := b− b̂(k).
Moreover, we know that the “perturbations”, ∆(k), are not
arbitrary—they arise from ignoring constraints. These insights
provide sufficient knowledge of ∆(k) to apply Corollary IV.5.1.
We are now in a position to prove the main result.

Theorem III.1. Let x(k) be the solution to the optimization
problem induced by restricting Problem 4 to k-hop neighbor-
hood around xi, N (dec)

k (i), and the constraints only involving

those variables. If λ = supx

√
κ(x)−1√
κ(x)+1

, where κ(x) denotes the

condition number of A∇2 f (x)−1AT , then
|x(k)i − x∗i | ≤Cλ

k (21)

for C =
(

1+
√

L
µ

)
2σmax(A)
σ2

min(A)

∥∥b−Ax∗UC

∥∥
2.

Proof sketch. The proof proceeds by first showing that the k-
hop sub-problem construction only removes constraints that
are at least distance k away from component xi. Next, we
derive a bound on the maximum constraint violation that
can arise from ignoring constraints. These two results can be
plugged into Corollary IV.5.1 to derive the main result.

The upshot of this theorem is that if an accuracy of
|x(k)i − x∗i | ≤ ε is desired, a neighborhood size of K ≥

1
1−λ

log
(C

ε

)
is sufficient. The larger λ is, the larger the

neighborhood needed to achieve a desired accuracy, whereas a
smaller λ indicates that a smaller neighborhood is sufficient.
We note here that the actual number of variables and con-
straints included in a neighborhood of a fixed size will depend
on the problem. For example, if Gdec is a path graph, then the
number of variables in each neighborhood will scale linearly
with k, whereas if Gdec is a grid graph, then the number of
variables in each neighborhood scales quadratically with k.

The close relationship between λ and the size of sub-
problem needed to achieve a desired accuracy justifies it as
a metric of the degree to which local information is sufficient
to approximate individual components of the global solution.
We are now in a position to define our metric of locality.

Definition IV.1 (Locality). For an optimization problem of the
form (4) we define the locality of the problem as

λ ( f ,A) = sup
x

√
κ(x)−1√
κ(x)+1

. (22)

We also extend the definition of locality to classes of problems.
Explicitly, if it is known that f ∈ F and A ∈A , we define the
locality of the class of problems as

λ (F, A ) = sup
f∈F,A∈A

λ ( f , A). (23)

For instance, in network utility maximization the class of
constraint matrices are those representing flow conservation
constraints.

D. Discussion
In this section, we have proposed a metric of locality

that captures the amount of information that is required to
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solve for a single component of an optimization problem.
From a practical standpoint, implementing the locality-aware
algorithm requires checking the condition number for a given
problem instance. In scenarios where the objective function,
f , and constraint matrix, A, are fixed, the locality parameter
can be computed offline, and passed in as a parameter to the
network. For example, in Section V we consider an instance of
economic dispatch where the objective function and constraint
matrix are fixed, and the constraint vector is determined online.
In this case, the proposed results can be immediately applied.

In Definition IV.1, we generalize our metric of locality to
classes of problems to account for problem instances that
exhibit variability in the objective and constraint matrix. As
an example, in the Appendix we consider a power network
state estimation problem, in which we maximize the posterior
probability of the power flows and voltage angles given noisy
measurements of both, subject to the power flow equations.
The class of problems encompassing this scenario is are
objective functions derived from the maximum-a-posteriori
estimation formulation, and the constraint matrix encoding the
power flow equations. The noisy measurements are modeled in
the objective function, and thus is stochastic and determined at
run-time. Regardless, the Hessian of the objective is constant
for all possible objective functions of this form, so the locality
metric can be readily computed. However, we remark that this
is not always be the case, and there is often a trade-off between
generality of a class of problems and how informative our
metric of locality is. For example, if all but one problem in
a class exhibit a high degree of locality, the proposed metric
would indicate that the entire class exhibits a low degree of
locality—resulting in bounds that are exceedingly conservative
for almost all of the problems in that class.

If computing the locality of an entire class of problem is
intractable, we suggest an approach where individual problem
instances are sampled, and their locality estimated. This moti-
vates a complementary notion of locality in a stochastic sense,
where the notion of locality is extended from being a worst-
case bound to one that captures the distribution of locality
parameters in a class of problem. Similarly, we highlight the
potential for a class of adaptive algorithms where agents indi-
vidually estimate local measures of locality based on problem
data within their neighborhood. This not only would alleviate
the overhead of computing the global locality parameter,
but would remedy the inherent conservatism of worst-case
bounds—as demonstrated in Section V, the maximum error
of Algorithm 1 across agents can be much worse than the
average error.

V. NUMERICAL EXPERIMENTS

In this section, we validate our theoretical bounds against
the true performance of the locality-aware algorithm.

First, we consider an instance of the economic dispatch
problem. We compare the true error of the locality-aware
algorithm with the theoretical upper-bound on the error, as a
function of the number of communication rounds. We observe
that when the condition number is low, the performance of the
algorithm closely matches the theoretical prediction. We also
revcompare against the dual coupled diffusion algorithm and
observe that the number of iterations necessary to achieve a
high level of accuracy far exceeds the number of communica-
tion rounds required for the locality-aware algorithm.

Second, we consider an instance of the rendezvous problem.
Intuitively, deciding on a meeting location that is central to
all agents is an inherently global problem. This is confirmed
by the high locality parameter. Empirically, the rendezvous
problem does not exhibit locality that is overlooked by the
theory. This confirms that our characterization of locality does
not buy us locality when there is none.

A. Economic Dispatch
1) Problem Setting: We consider a setting where generators

are positioned in an N×M grid, and load buses are positioned
in the center of each grid cell. Each load bus is only connected
to its neighboring generators, which need to supply enough
power to satisfy a stochastically generated load Li. The costs
associated with the problem are a quadratic generation and
transmission costs with coefficients α

2 and β

2 , respectively. The
optimization problem representing this setting is given by

minimize
x

α

2 ∑
i

(
∑

j∈N (i)
xi, j

)2

+
β

2 ∑
i

∑
j∈N (i)

x2
i, j

subject to ∑
i∈N ( j)

xi, j = L j, ∀ j.
(24)

If α = 0, the problem fully decouples and the optimal solution
splits each load evenly between its generators. This setting
allows us to use the parameters α and β to “tune” the locality
of the problem and evaluate the proposed bounds for varying
rates of locality. This example also illustrates the extension of
our results to block-separable objectives.

2) Effect of Locality on Convergence: In this example, we
fixed the dimension of the global problem to be 20×20, and
varied α to be 0.1, 10, and 1000. The condition number for
each of these cases was calculated and found to be 1.39,
37.62, and 3611.43, respectively—these correspond to locality
parameters of 0.08, 0.72, and 0.97. We select each load
uniformly from the range [0,10]. In each of these cases, we
run Algorithm 1 for values of K that vary between 0 and the
diameter of the network. Figure 1 plots the maximum and
average errors (computed over all the agents) against K, as
well as the error bound in Theorem III.1 derived from the
locality parameter. 8 For well-conditioned problems, the true
performance of the algorithm aligns closely with the theo-
retical prediction, while the theoretical bounds become more
conservative as the condition number increases. In cases with
low locality parameter, the error exhibits clear exponential
convergence. Whereas, when the locality parameter is higher,
the convergence rate of the error appears to increase with
the number of communication rounds. This aligns with the
superlinear convergence behavior sometimes observed with
Krylov subspace methods [24].

3) Comparison to other methods: We now evaluate the per-
formance of our algorithm against the dual coupled diffusion
algorithm of [17]. The dual coupled diffusion algorithm is a
proximal primal-dual decentralized optimization algorithm for
problems of the form

minimize
x1, . . . ,xN

f (x) =
N

∑
i=1

fi(xi)

subject to ∑
k∈Ns

As,kxk, ∀s = 1, . . . ,K
(25)

8We note that the constant bound in Theorem III.1 can be improved to
C = 2 1

σmin(A)

∥∥b−Ax∗UC

∥∥
2, by observing that any load not included in the

constraints will simply be left unfulfilled.
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Fig. 1: This figure plots the true accuracy of the locality-aware algorithm against the theoretical accuracy for varying
communication rounds. In the well-conditioned case, the proposed theoretical rate is tight. As the conditioning of the problem
increases, the theoretical bound becomes more conservative.

where fi : RQi → R, As,k ∈ RSs×Qk , bs ∈ RSs and Ns denotes
the neighborhood of agent s including agent s itself. We note
that problem (4) can be written in the form of problem (25)
where Qi = 1 for all i ∈ [N] and Ss = 1 for all s ∈ [K]. Every
agents maintains a copy of its local decision variable, and its
associated dual variables. In each synchronous iteration, the
algorithm uses proximal gradient descent to update the primal
variables, and a combination of gradient ascent and consensus
to update the dual variables. The primal and dual step-sizes
(denoted µx and µv, respectively) are constant throughout the
algorithm and assumed to be the same for all of the agents.

Critically, convergence is only guaranteed if µx <
1

2L−µ
=:

Cx and µv <
µ

λmax(BT B) =:Cv, where B is the matrix representing
the “global view” of the constraints. We evaluated sensitivity to
these bounds by testing various step-sizes given by µx = γCx
and µv = γCv for γ ∈ [0.25,0.95,2.0]. The maximum error,
‖x̂i− x∗‖

∞
, and the average error, ‖x̂i− x∗‖1 /∑i Qi, are plotted

against communication rounds in Figure 2. Generally, the
larger the step-size is the faster the convergence, so long as
the step-sizes remain below the provided bounds. Underes-
timating the step-size bounds results in dramatically slower
convergence. As such, effective implementation of the dual
coupled diffusion algorithm requires accurate estimates of
global problem data. Much like the locality-aware approach,
this dependence makes the dual coupled diffusion algorithm
best suited to scenarios where similar problems are solved
repeatedly online. In general, the locality-aware algorithm
requires far fewer communication rounds than the dual cou-
pled diffusion algorithm, with this difference being amplified
as the conditioning of the problem worsens. However, the
locality-aware algorithm requires explicitly sharing problem
data, while the dual-coupled diffusion algorithm only shares
dual estimates. Accordingly, the locality-aware algorithm is
preferable when privacy is not a concern, while the dual-
coupled diffusion algorithm is preferable when local objective
functions must be kept private.

B. Rendezvous

We now consider a rendezvous problem where 1000 agents,
placed uniformly at random in a [0,1]2 grid at locations
{(xi,yi)}i∈[1000], must decide on a meeting location central to
all agents. The optimization problem representing this setting
is given by

(x∗,y∗) = arg min
x,y ∈ R

N

∑
i=1

(x− xi)
2 +(y− yi)

2, (26)

where (x∗,y∗) ∈ R2 is the optimal meeting location. We
assume that the communication graph, G = (V,E) between
agents is a given by the minimum weight spanning tree of
their distances. We rewrite Problem 26 in “distributed” form:

minimize
x̂, ŷ ∈ RN

N

∑
i=1

(x̂i− xi)
2 +(ŷi− yi)

2

subject to x̂i = x̂ j, ŷi = ŷ j ∀(i, j) ∈ E

(27)

This formulation creates local copies of the meeting coordi-
nates, and ensures that neighbors agree on the same location.
Because the communication graph is connected, this ensures
that all agents agree on the same location. Intuitively, deciding
on a meeting location that is central to all agents is an
inherently global problem. This is confirmed by the locality
parameter, which was found to be λ = 0.9939. The true error
along with its theoretical bounds are plotted in Figure 3: unlike
the example of power network state-estimation presented in
the Appendix, the rendezvous example did not exhibit locality
that was overlooked by the theory.

This experiment shows that our characterization of locality
does not buy us locality when there is none. Some problems
that we might solve with a multi-agent system are inherently
global, requiring information from all of the nodes to solve
with reasonable accuracy. The purpose of this paper is not to
imbue all problems with with a high degree of locality, but
rather to develop a metric that can distinguish between the
two.

VI. CONCLUSION

In this paper, we have studied the structure of linearly-
constrained strongly-convex optimization problems, showing
that all such problems exhibit locality. Our results leverage
Conjugate Residuals to relate the locality of a problem to its
conditioning. The rate of locality derived from CR,

√
κ−1√
κ+1 ,

is a significant improvement to the κ−1
κ+1 rate derived in

previous work via the infinite Neumann expansion. This notion
provided a theoretical basis for a rather simple algorithm in
which agents individually solve a truncated sub-problem of
the global problem. Finally, we demonstrated our algorithm in
the context of both economic dispatch and rendezvous.

While the framework of locality appears to be a promising
direction for improving the scalability of multi-agent systems,
a number of key questions remain open. The first is the issue of
determining the locality parameter of a problem—as stated, it
is defined as a uniform bound on condition number, which
is inherently a global measure. This motivates developing
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Fig. 2: This figure plots the convergence of the dual coupled diffusion algorithm (maximum error is as a solid line, average
error as a dashed line in the same color) against the number of communication rounds for varying multiplicative factors of the
step-size bounds. In the well-conditioned case, convergence is rapid, but diverges when step-size exceeds the bounds provided
in [17]. As the conditioning worsens, convergence slows down dramatically, but the algorithm can still achieve convergence
despite the step-sizes exceeding the theoretical bounds.

Fig. 3: This figure shows the true accuracy of the locality-
aware algorithm (blue) against its theoretical accuracy (red).
The locality parameter, λ = 0.9939, indicates that the error
should hardly decay with the number of communication
rounds, which aligns with the empirical results observed.

algorithms that implicitly exploit locality in contrast to the
explicit truncation method in the present paper. Ideally, such
an algorithm would adapt to the present problem without
requiring the locality parameter as an input.
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VII. APPENDIX
A. Full Proofs of Section IV
Lemma IV.2 (Implicit Constraints). Let x̂(S) be defined as in
Lemma IV.1, and b̂ = Ax̂(S). Then,

x̂(S) = arg min
x ∈ RN

f (x)

subject to Ax = b̂.
(28)

Proof. Assume by contradiction that there exists an opti-
mal solution x̃∗ 6= x̂(S) to Problem (13) with optimal value
f (x̃∗)< f (x̂(S)). Note that on Cs, the implicit constraints are
equal to the true constraints. i.e., bCs =

[
b̂
]

Cs
.

The constraints in Problem (12) are a subset of the con-
straints in Problem (13). Therefore, the feasible set of Problem
(13) is contained in the feasible set of Problem (12). Explicitly,

{x | Ax = b̂}= {x | A−C,∗x = b̂−C, AC,∗x = b̂C} (29)
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⊆ {x | AC,∗x = b̂C}. (30)
If x̃∗ is the optimal solution to Problem (13), it is also a feasible
solution for Problem (12). Since f (x̃∗) < f (x̂(S)), x̂(S) is not
optimal for Problem (12)—a contradiction.

Theorem IV.5 (Decay in Sensitivity). The component-wise
magnitudes of the sensitivity expression can be bounded as

‖[D(b)∆]S‖2 ≤C
(√

κ−1√
κ +1

)d(S,supp(∆))

, (31)

where C =
2‖∆‖2

σmin(A)
, and κ =

λmax(AΣAT )

λmin(AΣAT )
.

Proof. Let δ (k) be the kth estimate of (AΣAT )−1∆ generated
via the Conjugate Residuals algorithm. Corollary IV.4.1 allows
us to conclude that [ΣAT δ (k)]S = 0 if k≤ d(S,supp(∆)). It then
follows that for all k ≤ d(S,supp(∆))
[D(b)∆]S = [D(b)∆−ΣAT

δ
(k)]S = [ΣAT ((AΣAT )−1

∆−δ
(k))]S.

(32)
Taking the norm of both sides of the equality,

‖[D(b)∆]S‖2 ≤
∥∥∥ΣAT ((AΣAT )−1

∆−δ
(k))
∥∥∥

2
. (33)

Notice that the kth residual can be expressed as
rk = A

(
ΣAT

(
(AΣAT )−1

∆−δ
(k)
))

, (34)
and convergence of the conjugate residuals algorithms guar-
antees that

‖rk‖2 ≤ 2
(√

κ−1√
κ +1

)k

‖r0‖2 . (35)

Using the fact that σmin(A)‖v‖ ≤ ‖Av‖, we can bound

‖[D(b)∆]S‖2 ≤
∥∥∥ΣAT ((AΣAT )−1

∆−δ
(k))
∥∥∥

2
(36)

≤ ‖rk‖2
σmin(A)

≤ 2‖∆‖2
σmin(A)

(√
κ−1√
κ +1

)k

. (37)

Taking C =
2‖∆‖2

σmin(A)
and k = d(S,supp(∆)) concludes the proof.

Corollary IV.5.1 (Decay in Error). If λ ≥
√

κ(x)−1√
κ(x)+1

for all x,

then for C = 2‖∆‖
σmin(A)

,∥∥[x∗(b̂+∆)− x∗(b̂)
]

S

∥∥≤Cλ
d(S,supp(∆)). (38)

Proof. Like before, we define xθ := x∗(b̂+ θ∆), and bθ :=
b̂+θ∆. Then,∥∥[x∗(b̂+∆)− x∗(b̂)

]
S

∥∥ (39)

=

∥∥∥∥[∫ 1

0
Σ(xθ )AT (AΣ(xθ )AT )−1

∆dθ

]
S

∥∥∥∥ (40)

=

∥∥∥∥∫ 1

0
[D(b)∆]Sdθ

∥∥∥∥≤ ∫ 1

0
‖[D(b)∆]S‖dθ (41)

≤
∫ 1

0

∥∥∥Σ(xθ )AT ((AΣ(xθ AT )−1
∆−δ

(k))
∥∥∥dθ (42)

≤
∫ 1

0

2‖∆‖
σmin(A)

(√
κ(xθ )−1√
κ(xθ )+1

)k

dθ ≤ 2‖∆‖
σmin(A)

λ
k. (43)

Taking C = 2‖∆‖
σmin(A)

completes the proof.

Theorem III.1 (Locality). Let x(k) be the solution to the
optimization problem induced by restricting Problem 4 to k-
hop neighborhood around xi, N (dec)

k (i), and the constraints

only involving those variables. If λ = supx

√
κ(x)−1√
κ(x)+1

, where

κ(x) denotes the condition number of A∇2 f (x)−1AT , then
|x(k)i − x∗i | ≤Cλ

k (44)

for C =
(

1+
√

L
µ

)
2σmax(A)
σ2

min(A)

∥∥b−Ax∗UC

∥∥
2.

Proof. First, we will show that the k-hop local sub-problem
is generated by cutting constrains that are at least distance k
from i under the primal-dual distance metric. We will prove
this by reasoning about the supports of the appropriate matrix
products. The set of primal variables contained in the k-hop
neighborhood of xi can be equivalently characterized as

N
(p)

k (i) =
{

j |
[
(AT A)k

]
i j
6= 0
}
= supp([(AT A)k]i∗). (45)

Similarly, the primal-dual distance metric can be defined as
d(i,c) = min{k | c ∈ supp

([
AT (AAT )k−1

]
i∗

)
} (46)

= min{k | c ∈ supp
([

(AT A)k−1AT
]

i∗

)
}. (47)

Because the graph Gdec is defined by placing an edge between
agents that appear together in the same constraint, if Ac,i 6= 0
and Ac, j 6= 0 for some constraint c, then for all l ∈V (d),

|d(i, l)−d( j, l)| ≤ 1.
Moreover, to generate the k-hop local sub-problem, a con-
straint is only cut if it contains a variable of distance at least
k + 1. Consequently, all of the primal variables in the cut
constraint are at least distance k from i. We can now apply
Corollary IV.5.1 to bound the error in component i as

|x(k)i − x∗i | ≤
2
∥∥∥∆(k)

∥∥∥
σmin(A)

λ
k.

We will bound the ∆(k) term by deriving the maximum
constraint violation error,

∥∥∥b− b̂(k)
∥∥∥

2
. We do so by noting that

the solution to the local sub-problems are consistent with the
solution to x̂N (i,k) = arg min

x ∈ RN
f (x)

subject to ACN (i,K)
x = bCN (i,K)

.
(48)

That is, the constraints are equivalent to that of agent i’s k-
hop local sub-problem but all variables are included in the cost
function. Precisely,

x(N (i,k)) =
[
x̂N (i,k)

]
N (i,K)

.

Consequently, only variables in N (i,k) are constrained. We
define x∗UC = argmin f (x) to be the solution to the uncon-
strained problem. Then,[

x̂N (i,K)
]

i
=

{
x(N (i,k))

i , if i ∈N (i,k)[
x∗UC

]
i , if i 6∈N (i,k).

(49)

The component-wise constraint violation are given by,[
b− b̂(k)

]
i
=

{
0, if i ∈CN (i,K)[
b−Ax̂(N (i,K))

]
i
, if i 6∈CN (i,K).

(50)

To obtain a uniform bound on
∥∥∥[b−Ax̂(N (i,K))

∥∥∥
2
, we will

show that∥∥∥b−Ax̂(N (i,K))
∥∥∥

2
≤

(
1+

√
L
µ

)
σmax(A)
σmin(A)

‖b−Ax∗UC‖2 (51)

Because f is L-smooth and µ-strongly convex,
µ

2
‖x− xUC‖2

2 ≤ f (x)− f (xUC)≤
L
2
‖x− xUC‖2

2 (52)

Moreover, because f (x̂)≤ f (x),
µ

2
‖x̂− xUC‖2

2 ≤
L
2
‖x− xUC‖2

2 . (53)
Then, using the triangle inequality,

‖x− x̂‖2 ≤ ‖x− xUC‖2 +‖xUC− x̂‖2 ≤

(
1+

√
L
µ

)
‖x− xUC‖2

(54)
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Finally, because σmin(A)‖v‖ ≤ ‖Av‖ ≤ σmax(A)‖v‖ and
b = Ax,

‖b−Ax̂‖2 ≤

(
1+

√
L
µ

)
σmax(A)
σmin(A)

‖b−Ax∗UC‖2 . (55)

B. Additional Experiments—Power Network State Estimation
In this section, we consider a state-estimation problem on

the Pan European Grid Advanced Simulation and State Estima-
tion (PEGASE) 9241-bus power-network [25]. Theoretically,
this problem exhibits a high locality rate, which suggests
that a locality-aware algorithm is not appropriate. However,
empirically we observe that the locally-aware algorithm still
manages to find a high-quality solution in fairly few rounds,
indicating that our bounds can be overly conservative.

We model the power network by a graph G = (V,E). We
assume that the network is primarily inductive, the voltage
amplitudes are fixed to one, and the voltage angle differences
between neighboring nodes are small enough to apply the DC
power assumption. Then, the power flow Pi j on edge (i, j)∈ E
satisfies Pi j =−bi j(θi−θ j). (56)
We consider a setting where both the voltage angles, θ , and
line power flows, P, are measured according to

θ
m
i = θi + εi, Pm

i j = Pi j + εi j (57)
where εi ∼N (0,σ2

i ), and εi j ∼N (0,σ2
i j), and the true power

flow and voltage angles are estimated. Then, the maximum a
posteriori estimation problem is given by

minimize
θ̂ ∈ R|V |, P̂ ∈ R|E|

∑
i∈V

(
θ̂i−θ m

i
σi

)2

+ ∑
(i, j)∈E

(
P̂i j−Pm

i j

σi j

)2

subject to
[

I B
][ P̂

θ̂

]
= 0

(58)
where I is the identity matrix, and B is the network admittance
matrix containing the electrical parameters and topology infor-
mation [26]. We simulated Algorithm 1 for K = 2, . . . ,20, and
plotted the results in Figure 4. The average and maximum

Fig. 4: This figure plots communication rounds versus average,
maximum, and theoretical errors in the power flow and voltage
angle estimates. The theoretical bounds suggest a rate of
decay of 0.9992. However, both the maximum and average
errors decay much faster, with the average error an order of
magnitude smaller than the maximum.

errors in both the powerflow and voltage angle estimates
are shown in Figure 4 along with their theoretical bounds.
We found that the condition number of the problem was
6.37× 106, resulting in a locality rate of 0.9992. The theo-
retical bounds, in this case, would suggest that the locality-
aware approach is not well-suited to the problem setting.
However, numerically, we observe that this bound is overly

conservative and the problem instance nevertheless exhibits
locality behavior. Additionally, the average error is an order of
magnitude less than the maximum error exhibited. Our method
of analysis resulted in a uniform worst-case bound, however,
this experiment demonstrates that the worst case is a poor
representation of the average case. Accordingly, we highlight
extending the results of this paper to local measures of locality.
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