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Abstract—CADRE (Cooperative Autonomous Distributed Ro-
botic Exploration) is a lunar technology demonstration mission
of multi-agent autonomy on a team of three rovers and a base
station. The mission is slated land at the Moon’s Reiner Gamma
region as a CLPS (Commercial Lunar Payload Services) pay-
load on the IM-3 mission in 2024. The goal of CADRE is to
demonstrate how a team of autonomous rovers, receiving only
high-level tasks from Earth, can autonomously explore a region
of the Lunar surface, as well as perform a distributed mea-
surement in coordination with a multi-static ground-penetrating
radar. We envision that multi-agent autonomy will enable future
missions to address hitherto-unanswered questions in planetary
science on the Moon, Mars, and beyond. In this paper, we
describe the autonomy architecture developed for CADRE, both
for multi-agent coordination, and for single-agent driving sur-
face mobility, and discuss the requirements and constraints that
led to the selection of this architecture.
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1. INTRODUCTION
Multi-robot systems offer great promise for planetary ex-
ploration, offering the unique ability to collect distributed
measurements of phenomena of interest from multiple van-
tage points at nearly simultaneous times. Such distributed
measurements are critical to address a number of unre-
solved questions in planetary science, ranging from sub-
surface composition, which can be studied through multi-
static ground-penetrating radar and seismic surveys, to at-
mospheric circulation and the origin of trace gas emissions,
which can be investigated through networked weather sta-
tions and laser spectrometers.

Mobile robotic platforms are a promising platform to col-
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lect distributed measurements; however, operating multiple,
closely-cooperating robots through traditional ground-in-the-
loop operations cycles is highly challenging, which has
motivated significant research in the field of autonomous
operations for cooperative robotic explorers.

The Cooperative Autonomous Distributed Robotic Ex-
ploration (CADRE) mission, funded by NASA’s Game-
Changing Development program, aims to provide a technol-
ogy demonstration platform for autonomy technologies for
multi-robot scientific explorers. CADRE plans to operate
three autonomous robots at the Moon’s Reiner Gamma region
in 2024. The robots will first autonomously explore a region
near the landing site, and then autonomously perform a multi-
static ground-penetrating radar (GPR) survey of the region,
with minimal ground intervention, paving the way for future
Solar System exploration with coordinated robotic explorers.

In this paper, we will present CADRE’s novel autonomy
solution, and discuss the key requirements driving its design.
The goal of CADRE’s autonomy is to translate high-level
commands from ground operators, e.g., “explore this region”
and “perform a multi-static ground penetrating radar survey
of this area”, into commands for the rovers’ individual surface
navigation stacks, i.e., “go to this location by this time”.
Multi-agent autonomy must account for the rovers’ limited
resources, specifically thermal capacity and power level; and
ensure that the system presents no single point of failure
whose loss could jeopardize the system. CADRE’s multi-
agent autonomy has six key components described below:

1. A leader election module ensures that the team has one
leader at all times. The leader may be one of the rovers or
a base station, located on the lander. The leader mediates
all coordination between the agents; non-leader agents never
communicate with each other directly. If the leader is lost,
another agent is immediately elected in its stead; the leader
is selected based on the agents’ available power and thermal
capacity.
2. A strategic planner running on the leader, decides which
activities should be collectively performed by the agents
based on their thermal state and available power. The planner
produces a sequence for each rover, including tasks such as
“explore” and “collect a multi-static measurement”.
3. A pair of team planners, also located on the leader,
elaborate the strategic planner’s high-level commands into
commands for the individual agents.
4. For distributed measurements, a sampling-based motion
planner is used to compute trajectories for all robots. The
trajectories are obstacle-free, and steer the rovers towards
satisfaction of inter-rover separation constraints required to
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perform the GPR survey. For exploration, a divide-and-
conquer approach is adopted: the region to explore is divided
in several subregions, one per available rover.
5. For the exploration activity, an agent planner further elab-
orates the team planners’ instructions. The module receives
as input the subregion that the rover should explore; it selects
the next location that the rover should drive to with a frontier-
based heuristic. Exploration ends when the subregion is
sufficiently mapped.
6. The coordination functions performed by the leader re-
quire knowledge of the rovers’ location, temperature, and
power states, and of the traversability maps computed by
individual robots. A shared state database synchronizes
relevant information from all rovers to the current leader.
The database also backs up all information to a designated
survivor to ensure that no data is lost in case of a rover failure.

CADRE’s multi-agent autonomy is enabled by a robust sur-
face mobility autonomy stack that is capable of autonomous
rover navigation, as well as, by the F’ (or FPrime) flight
software providing access to hardware sensors and other data
relied upon by autonomy.)

2. MISSION AND SYSTEM OVERVIEW
CADRE (Cooperative Autonomous Distributed Robotic Ex-
ploration) is a technology development project funded by
the NASA STMD (Space Technology Mission Directorate)
Game Changing Development (GCD) program. The objec-
tive is to further mature and demonstrate multi-agent tech-
nologies developed by NASA’s Jet Propulsion Laboratory
(JPL) under GCD’s Autonomous PUFFER project as a flight
system on the moon. CADRE’s technology demonstration on
the moon will demonstrate that a team of autonomous rovers
can navigate and explore the lunar daytime environment with
minimal human direction from the ground.

Technology Demonstration

CADRE is manifested on Intuitive Machines’ (IM) IM-3 mis-
sion to an equatorial landing spot near Reiner Gamma. Reiner
Gamma is Earth facing and is known for its lunar swirls–light
and dark regolith mixing on the surface. CADRE is one of
several payloads aboard IM’s Nova-C lander. The IM-3 (and
CADRE) mission will last most of the Lunar day (roughly
10 out of the 14 Earth days). The lander provides landing to
lunar surface, as well as, power and communication for its
payloads. CADRE will use its communication capabilities
to transmit telemetry to JPL’s ground data systems (GDS)
throught the mission. After a ground operated deployment
and commissioning of three rovers, CADRE will perform a
series of experiments targeted at demonstrating various multi-
agent capabilities:

• A threshold drive with the team in a specific formation,
while capturing maps from on-board all rovers using their
stereo cameras.
• A threshold operation of two ground penetrating radars
(GPR) in a bi-static configuration.
• A baseline three-rover exploration task to fully, coopera-
tively map a specified region nearby the lander.
• A baseline three-rover multi-static GPR survey over tens of
meters.
• A baseline resiliency experiment by disabling autonomy of
specific rovers (or base station) to demonstrate autonomy’s
resiliency to agent loss.

Any additional mission time can be devoted to expanding on

the baseline experiments.

System (Hardware) Overview

The CADRE system consists of several different components
to enable the lunar technology demonstration–three (3) lunar
rovers, one (1) base station, a situational awareness camera
assembly (SACA), and deployers for each rover as shown in
Figure 1. The deployers and SACA are mounted permanently
to the lander, and so is the base station. The base station is
similar in terms of its compute and wireless communication
capabilities as the rovers, but lacks sensors and mobility. It
is, however, hardwired for communication and power to the
lander, and thus plays a key role in downlink and uplink to
the system.

Rovers—The rovers shown in Figure 2 are small and light,
roughly like a carry-on luggage, at less than 10kg and roughly
0.75 × 0.5 × 0.2 m3 in volume with solar panels deployed.
Solar panels are initially folded on top of the upward facing
radiator, but then permanently deployed once the rovers are
teleoperated to their initial ”sun-bathing” locations nearby the
lander after landing. The radiator is for temperature regula-
tion, allowing the rovers to dissipate heat towards space. Each
rover has four fixed wheels (skid-steer driving) with a variety
of autonomy-specific sensors, such as dual stereo cameras, an
inertial measurement unit (IMU), a sun sensor as a compass,
and an ultra-wideband ranging radio for inter-rover distance
estimation. All these sensors are used together to allow the
rovers to estimate their motion in the lunar environment, as
well as, understand the lunar environment itself as described
in more detail in 4.

Compute is provided by ModalAI’s VOXL, a Qualcomm
Snapdragon 821 development board, with a quad core pro-
cessor with integrated GPU. CADRE’s flight software is
implemented in C++ using F’ [1] and takes advantage of not
only the unique high and low-speed cores of the CPU, but also
the GPU via OpenCL [2]. A rootfs is built using ModalAI’s
tools and loaded with a Debian bookworm chroot. This
setup is consistent with CADRE’s development machines,
which allows the use of multi-arch and cross-building support
to manage standard environments across the different proto-
typing and flight environments.

Each rover is equipped with a ground penetrating radar
(GPR), which is self-contained hardware and software to
perform a multi-static measurement with the GPRs on-board
the other rovers. The GPRs antenna is mounted at the bottom
front of the rover facing towards the ground with enough
clearance to allow the rover to maneuver the lunar surface
safely.

A key requirement for multi-agent systems is the ability to
communicate with other agents. All CADRE rovers are
equipped with a mesh network radios (MNR) to allow high-
bandwidth communication directly or via multiple hops if
necessary. The base station also has such a radio, conse-
quently, downlink is possible from any agent to the base
station and then down to the ground through the lander.

Key Constraints

Since CADRE’s lunar technology demonstration is during the
lunar daytime and near equatorial, the primary constraint are
thermal limits. At peak times, the lunar surface is as hot as
120 ◦C, which is well above operating temperature of most
consumer electronics used on CADRE. Consequently, most
of the hardware is directly bolted to the radiator (which had
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Figure 1. Rendering of the CADRE system as it could be integrated with Intuitive Machine’s lander.

Figure 2. The rovers are illustrated in their stowed and (permanently) deployed configurations with key hardware
components highlighted.

to be sufficiently sized and thus constrained the number of
rovers that could be accommodated in the total payload en-
velope allocated to CADRE). The rovers are also operated on
a 30 minute cycle, which means that Y minutes are assigned
for cooling down and recharging, while 30 − Y minutes are
available for bootup and operation. During the sleep cycle,
the VOXL is completely shutdown and only reawoken by the
FPGA at the 30 minute mark. Consequently, autonomy has
to be capable of safely shutting down and resuming work.

Another key constraint is network bandwidth. While the
MNRs (Mesh Network Radios) can allow for Mbits of com-
munication, downlink is limited to kbits. Consequently, the
rovers (and GPR) can easily transmit far more data than what
can be reasonably downlinked. Ground operations has to
be calculated to downlink the most important data to make
timely adjustments to the system.

Although compute is more powerful than the typical
RAD750 and slightly more powerful than Ingenuity’s (the
Mars Helicopter’s) Qualcomm 801, computational resources
in terms of CPU speed and available memory is still limited
given the increased demands of autonomy in this system.
Some algorithms had to be moved over to the GPU, while
sensor data collection is assigned to the FPGA. The flight
software is carefully allocated to specific cores to minimize
resource contention.

The CADRE rovers are also much smaller than typical rovers,
such that their sensors are close to the ground vs. high up on a
mast. Consequently, CADRE rovers have shorter perception
distances and features image-to-image move quickly necessi-
tating a higher image processing rate.

However, at least some of these constraints can be overcome
by multi-agent systems by working together to build up larger
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maps to plan on, to aggregate and summarize data products,
to allocate compute to the least resource constrained agent,
and other such cooperative capabilities.

3. MULTI-AGENT AUTONOMY
A number of multi-agent autonomy architectures were con-
sidered for CADRE. The trade study included centralized
architectures where one agent makes all decisions requir-
ing coordination between multiple assets; decentralized but
globally-coordinated architectures where agents exchange
messages to agree on the next course of action, either by
sharing key sensor readings and computing the next course
of action for all agents deterministically, in a shared-world
fashion, or by bidding on activities that they should perform
with an auction-based approach; and local-coordination ap-
proaches where each agent executes simple actions based on
its and its immediate neighbors’ states, resulting in desirable
emerging behaviors. We refer the reader to [3] for a survey of
coordination approaches in multi-agent systems.

For CADRE, we selected a dynamic centralized architecture
with an elected leader (shown in Figure 3). All decisions
requiring coordination between the agents are made by a
“leader” agent; the leader is selected dynamically by the
agents, ensuring resilience to loss or degradation of indi-
vidual agents. This approach provides the key advantages
of centralized architectures, namely, (i) lower communica-
tion overhead compared to decentralized approaches (since
information must only be shared with one leader, as opposed
to all agents) and (ii) greater explainability of coordination
decisions compared to decentralized approaches (since all
coordination decisions are made on an individual agent); at
the same time, leader election mitigates the key disadvantage
of centralized architecture, i.e., the presence of a single
point of failure, at the cost of increased communication and
complexity to ensure that the system has one, and only one,
leader at all times.

A centralized architecture with a fixed leader was not selected
because of the unacceptable introduction of a single point of
failure. Bidding-based approaches were not selected due to
increased communication overhead compared to the selected
leader election architecture, and the consideration that the
key advantage of bidding architectures (namely, the ability to
accommodate heterogeneous agents without disclosing each
individual agent’s abilities and cost function to the entire
team) is not highly relevant to the CADRE mission. Shared-
world approaches were considered, but the possibility of
scenarios where agents would take uncoordinated actions in
presence of communication failures (as opposed to stopping
in absence of information, as the selected approach does)
was highly concerning from an operational standpoint. Fi-
nally, local-coordination approaches were not selected due
to the complexity of encoding the desired behaviors in local
coordination laws; the key advantage of local-coordination
approches, namely, scalability to a large number of agents,
was not highly relevant to CADRE’s four-agent architecture.

Leader Election

The underlying algorithm used by CADRE’s leader election
process is a distributed algorithm for constructing minimum
spanning graphs known as GHS, after the authors Gallager,
Humblet, and Spira [4]. Upon wakeup, each agent assumes
leadership of a one-node “tree” that only includes itself. By
exchanging messages over the mesh radio network, the roots
of each tree can discover each other and decide to merge

their trees into larger trees, while leaving one of the agents
(selected as the root of the tree) to lead that tree. This process
is repeated up to log(n) times, until all agents are in the same
tree.

This algorithm results in a minimum spanning tree (MST)
for the network of connected agents (where connected means
the set of agents that are connected to each other and the base
station). The root of this MST is then assigned as “appointer”,
and selects a leader based on an operator-defined metric
that captures a linear combination of the agent’s power and
thermal states, and with a strong preference for maintaining
the existing leader. A second agent is selected as designated
survivor, for increased resilience - the designated survivor
is primed to become the new leader in case the selected
one is lost. The primary reason for the designated survivor
is to minimize the impact of having to rebuild knowledge
on leader change (similar to a RAID system [?]) , which
will be discussed in more detail in subsection 3. All agents
synchronize information to both the leader and the designated
survivor, allowing for handover of leadership responsibilities
without a lengthy information synchronization phase. The
leader selection process performed by the appointer is heavily
biased towards the winner of the previous election to min-
imize changes in leadership and thus, mitigate the cost of
leadership changes.

Strategic Planner

Leader election in a multi-agent system allows for a central-
ized agent to make strategic decisions about what the team
should do to accomplish a specified goal. Specifically, the
function of the strategic planner is to take a system-level
goal from ground operations and generate a sequence of tasks
to be executed by each rover on the team, accounting for
the rovers’ available resources (i.e., their available energy
and thermal state). The underlying implementation of the
strategic planner is provided by JPL’s MEXEC planning,
scheduling, and execution framework [5]. System-level tasks
and constraints (e.g., “explore this region”, “never drain
the battery below 20%”) are encoded in a “task network”
(or “tasknet”) that is uploaded by ground operators, along
with parameters for individual activities (e.g., “drive with a
maximum velocity of ∆m/s”). The tasknet includes a set of
tasks and their constraints, including precedence constraints
(e.g., “an agent can only explore a region after regions for
all agents have been computed”), resource constraints (e.g.,
“exploration can only be performed while the battery level is
higher than 20%”), and temporal constraints (e.g., “no tasks
should be scheduled at times when the rovers are scheduled
to be under ground control”). The tasknet also includes pre-
dicted resource impacts (e.g., “exploring a 100 m2 region will
drain the battery by 40%”), allowing the on-board scheduler
to predict the expected impact of planned activities. Two
sets of tasknets have been developed for CADRE, one for
exploration and one for the distributed measurements. For
both activities, different tasknets are used at different times
of the Lunar day, capturing variations in the predicted impact
of tasks on the rovers’ thermal and power state (e.g., rovers
will warm up faster closer to lunar noon). Operators are
able to select which set of tasknets should be used (and
therefore whether exploration of a distributed measurement
should be performed) by modifying the autonomy startup
sequence. An on-board scheduling algorithm then processes
the tasknet to generate a sequence of feasible tasks; the se-
quence is expected to satisfy the prescribed constraints based
on the provided resource impact models. The sequence is
periodically re-evaluated based on real-time measurements of
available resources, in particular, the rovers’s state of charge
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Figure 3. CADRE’s multi-agent autonomy architecture relies on six key components: a strategic planner, team
planners and agent planners, a distributed database, a leader election module, and a Surface Mobility module.
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and temperature.

Figure 4 shows the output of the strategic planner. The
top pane displays the sequence developed for all agents; the
bottom pane displays the predicted evolution of key on-board
resources including temperature and available energy.

While the strategic planner manages on-board resources, it
does not explicitly reason about spatial tasks, e.g., where the
rovers should drive to explore a region, or how they should
keep in formation; rather, these decisions are delegated to
“team planners” that are invoked by the strategic planner.
Specifically, the task network includes tasks that capture re-
quired coordination between the agents, i.e., “compute which
regions the agents should explore” and “compute a collision-
free formation trajectory for the agents”. From the strategic
planner’s standpoints, these tasks are prerequisites for the
agents’ individual tasks, e.g., “explore a region” and “drive
in formation”; when the coordination tasks are invoked, the
team planners (discussed next) ensure spatial coordination
between the agents.

Team Planners

Team planners are responsible for solving specific coopera-
tive problems, such as exploration or performing distributed
measurements. CADRE will demonstrated both of these
capabilities during the lunar demonstration, and thus, has im-
plemented two planners. Exploration allows multiple rovers
to collectively collect the data required to build up a surface
map; distributed measurement uses ground-penetrating radars
on-board each rover to map the subsurface by driving in a
specific geometric formation.

Exploration—To decide where agents should drive to explore
a region, we adopt a variant the ubiquitous frontier explo-
ration approach proposed by Yamauchi [6].

A key design driver for the planner was to delegate signifi-
cant decision-making authority to individual agents so as to
enhance the system’s resilience to temporary losses in com-
munication. CADRE’s predecessor, Autonomous PUFFER,
solved the exploration problem using frontier based explo-
ration combined with communication constraints [7], such
that for each set of frontier locations that would be serviced
by the rovers, the rovers would be within line of sight of each
other, such that a connected network to the base station exists.

In contrast, in CADRE, we elected to allow individual agents
to select which frontier points to explore; the leader’s role
was reduced to dividing the overall region to explore into N
minimally-overlapping subregions, one per rover, via clus-
tering of unknown space. Once each rover is assigned to a
subregion, it performs frontier exploration in the subregion
until the size of the frontier shrinks to zero. Rovers keep
track of explored areas via local maps that assume three
possible values: ”unknown”, ”obstacle”, and ”traversable”.
The maps are periodically relayed to the leader, which keeps
track of exploration progress, and re-computes the subregions
assigned to each rover periodically; this allows the system
to redirect more resources to harder-to-explore regions, e.g.,
regions with more obstacles cluttering the agents’ perception.

Distributed Measurement— A distributed measurement is
when rovers in different physical locations use their instru-
ment at the same time to characterize the environment from
multiple viewpoints. CADRE rovers are equipped with a
ground penetrating radar (GPR). The state-of-the-art, such
as Preseverance’s (M2020’s) RIMFAX [8], is to use a single

radar on a singular robotic platform to sound the subsurface
by measuring its own reflections. This approach leads to
the need to interpolate heavily between measurements to
achieve 3D images from 2D tracks obtained through, e.g.,
a lawnmower pattern. In contrast, multiple, synchronized
radars are able to improve on this approach by not only
listening to their own reflections, but the reflection of neigh-
boring radars at known relative positions. Such multi-static
ground penetrating radar measurements allow for direct 3D
subsurface measurements with lower noise due to reduced
need for interpolation and additional information gained from
the cross-track measurement of reflections from other robots’
signals (i.e., non-self reflections).

Since a multi-static GPR is most sensitive at a specific depth
with a 1:1 relationship to the separation distance between
radars, the autonomy effectively needs to maintain a forma-
tion for the duration of a drive on the lunar surface. Such
formation driving could be achieved with realtime control,
but CADRE’s approach is to break up planning and exe-
cution as is done with exploration to reduce the need for
communications between agents, and in particular between
non-leader agents. In this spirit, a team planner is responsible
for computing collision-free, in-formation trajectories for all
rovers, along with tolerances in space and time. These
tolerance are selected so as to to keep the GPRs within
±3dB of their optimal signal-to-noise ratio. The tolerances
can be thought of as “tunnels” around the trajectories, and
scale linearly with the distance between rovers–the larger the
inter-rover distances, the larger the tolerance. A sample-
based motion planning algorithm, RRT ∗ [9], is used to plan
kinematic trajectories in the joint state space of all robots,
represented as the (x, y, θ) location of a virtual leader and the
(δ, ω) deviations from the nominal formation position of all
robots with respect to the virtual leader. The latter deviations
are important in allowing to plan trajectories samples that
diverge from the nominal formation (within the prescribed
tolerances) to allow the planner to find paths around obstacles
in the environment. To ensure computational efficiency,
this planner only generates kinematic solutions, ignoring the
vehicles’ dynamics: tolerances are selected so as to account
for localization uncertainty as well as execution uncertainty
induced by the actual vehicle dynamics.

The output of a sampling-based planner can be rather un-
smooth; to mitigate this, a post-processing step smooths the
trajectory, as illustrated in Figure 5. Specifically, the solution
is revised iteratively to align the orientation of rovers and
nudge the formation away from any close obstacle (although
the original RRT solution already ensures no rover’s footprint
overlapping with a hazard in the map).

All points on the trajectory are then time-stamped assuming
the agents will follow a conservative trapezoidal velocity
profile. This way, so long as every agent can follow its own
time-stamped trajectory, the agents are guaranteed to stay in
formation with no communication.

The on-board planner takes the assigned trajectory and feeds
it into the surface mobility. Any issues by the surface mobility
subsystem in following the trajectory within the provided
tolerances is reported to the leader and causes a full replan
at the strategic planner level, incorporating the most recent
information (e.g., obstacles that were not present in the initial
map) – not immediately to the ground operations team.
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Figure 4. Output of the strategic planner.

Distributed Database

In order to perform its duties, the leader needs to collate
information from all agents. In particular, the strategic
planner requires knowledge of which agents are able to
participate in multi-agent autonomy (i.e., which agents have
been deemed operational by ground operators and on-board
fault protection), and the power and temperature of all agents;
in addition, the team planners for exploration and distributed
measurements require knowledge of the agents’ location and,
critically, of a global, up-to-date map of the environment. A
distributed database is responsible for collecting this data
from every agent and synchronizing it to the leader and
designated survivor. The distributed database interfaces with
power and temperature estimators provided by flight soft-
ware; with fault protection; and with surface mobility, which
provides each rover’s location and periodically output local
maps centered around the robot’s location.

The database is built atop SQLite. A message-passing ap-
proach is used to synchronize information from agents to the
leader on demand. Each value stored in the database is tagged

with the originating agent’s ID, and with a timestamp. For
time-sensitive information such as power level, temperature,
and agent location, only the most recent value is synchro-
nized; in contrast, all recorded maps are synchronized to
the leader, allowing reconstruction of a global map of the
environment. This synchronization is triggered immediately
prior to strategic and team planning activities, to ensure that
the most recent data is available to the leader.

Map merging— The distributed database is responsible to
store and merge local maps generated by surface mobility into
a global map. Surface mobility produces maps containing
one of three possible values: “traversable”, “obstacle”, and
“unknown”.

When merging multiple maps, three rules are observed:

• “traversable” and “obstacle” values always trump “un-
known” values;
• higher-resolution maps are believed over lower-resolution
ones (with the exception of “unknown” values); and
• at the same resolution, more recent data trumps older
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Figure 5. Multi-agent RRT ∗ and smoothed ouputs from the planner for the distributed measurements.

information.

Map-merging operations are implemented in OpenGL, result-
ing in significant parallelism; due to limitations in the Snap-
dragon Flight’s drivers, however, the operation is performed
on the Snapdragon’s CPU.

The surface mobility stack includes a pose graph optimization
(PGO) module (described in 4) which recomputes the most
likely past and present locations of all rovers based on RF
ranging information collected by radios on the agents. When
PGO is executed, the location of past maps stored in the

distributed database is updated accordingly.

4. SURFACE MOBILITY
A Surface Mobility subsystem on each rover is responsible
for executing trajectories or driving to waypoints provided
from the multi-agent autonomy and for providing information
about the local environment for team-level planning purposes.
Since a rover is executing a motion plan without any external
information about its location in the world and the high-
resolution structure of the surrounding environment, it uses
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Figure 6. Overview of the Surface Mobility subsystem’s key components.

information from its on-board navigation sensors to estimate
its global pose and assemble a local, high-resolution map to
enable obstacle avoidance of small-sized drive hazards below
the resolution of an orbital map.

Therefore, we deploy three major subsystems (Figure 6):

• State Estimation estimates the pose of the rover in the world
frame based on image feature tracking and inputs from the
on-board IMU and sun sensor.
• Mapping uses inputs from the on-board camera to perform
a 3D reconstruction and the assembly of a local traversability
map.
• And Motion Planning uses the local maps and the es-
timated pose to execute a trajectory that is passed down
from the multi-agent autonomy through the on-board agent
controller.

Together, this allows the rovers to successfully navigate the
lunar environment without any intervention.

State Estimation

The on-board state estimator deploys a visual-inertial-solar
odometry approach that fuses visual information from the
stereo cameras with inertial information from the IMU, and
sun direction from the sun sensor. The odometry algorithm is
designed to resolve high dynamic motion that can occur when
a rover drives over rocks (the rovers have no suspension sys-
tem) by integrating high-rate IMU data (accelerometers and
gyroscopes at 200 Hz) and fusing the propagated pose in an
Extended Kalman Filter approach with low-rate information
from the vision system and the sun sensor to correct for drift
and to estimate the IMU biases.

Visual information consists of image features that are tracked
over time in a keyframe based approach. Initially, features
are detected in the left reference view of a stereo camera,
and range is computed for each feature by a sparse stereo
algorithm which is based on a local block matching approach
[10]. 3D features are then added as SLAM features in
the Kalman filter for this initial base frame and tracked in
subsequent tracking frames to calculate a vision update.

A key feature of the CADRE vision system on each rover
is its front- and rear-facing stereo cameras. Since the lunar
lighting environment is challenging, the rovers use two stereo
camera pairs to switch whenever the lighting conditions are
unfavorable in a particular direction. Lighting conditions
are also addressed by an autoexposure algorithm to handle
changes in scene lighting as a consequence of the rover being
pointed more towards to ground (brighter) or more towards
the sky (darker).

Whenever the number of tracked features drops below a
threshold, the system selects the stereo camera system (front
or rear) that is most feasible for feature tracking based on a
image quality heuristic, and a new base frame is triggered
using the selected stereo camera.

Finally, the state estimator uses sun angle measurements from
the sun sensor to update the rover attitude. This is the only
sensor that provides global information to the state estimator,
reducing yaw drift substantially.

Mapping

Local mapping serves two purposes: the detection of drive
hazards (rocks of a certain size and slopes beyond a certain
inclination - e.g. inside craters) and the collection of 3D data
of the environment to provide to the team planner. Mapping
gets its inputs from a dense stereo algorithm [10] that uses
either the front or the rear stereo cameras - depending on
the drive direction - to produce sub-pixel precise disparity
maps. Since the range error of stereo reconstruction scales
with distance, the map representation is arranged as a multi-
size, multi-resolution robocentric map to adapt the map cell
size to the increasing range error with distance (Figure 7).
(Figure 7, Table 1).

New measurements get fused into the map by deploying a
Kalman filter based approach for level 0 (similar to [11]) and
a Converging Covariance Map based approach for the upper
levels ([12]). This allows for fine resolution height mapping
to detect very small obstacles of 3 cm lateral size, whereas the
higher levels allow for the detection of larger obstacles plus
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Table 1. Map resolution per layer

Layer Resolution Size
0 1 cm 1.28 m
1 4 cm 2.56 m
2 16 cm 5.12 m
3 64 cm 10.24 m

Figure 7. Layout of multi-size, multi-resolution local
map.

the slope contained within a cell. From these local elevation
maps, Mapping calculates a traversability map based on
the roughness of the terrain and the steepness of the slope.
Traversability maps are calculated in two resolutions. A level
0 resolution for the local planner, and a level 1 resolution for
the global planner. Terrain is coded as traversable, hazard,
and unknown, and the planners react differently to these
values: whereas the local planner considers both, hazard and
unknown as obstacles, the global planner tolerates unknown
as traversable terrain. Before sending the traversability maps
to the local and global planner, they are transformed into
signed distance field maps which both planners use as a cost
gradient map for planning.

Motion Planning

Surface Mobility motion planning uses a hierarchical ap-
proach dividing the task of finding feasible paths into two
different planners with different planning horizons. Both
planners formulate an optimal control problem and solve the
subsequent optimization problem using a factor-graph based
optimization solver (G2o [13]) considering time, heading,

Figure 8. Multi-resolution map in simulation: a rover is
driving to the bottom of the right image encountering a
crater. Left column: multi-resolution elevation map (red
colors coding farther away points; rover is at the center
of the map; drive direction is up). Level 0 map is at the

top, Level 3 map at the bottom.

and collisions as major cost terms (Figure 10, 9).

The Global Planner uses a look-ahead horizon that can span
outside the map extent. It receives a reference trajectory from
the Agent Planner which consists of a sequence of waypoints
in the case of formation sensing or a single waypoint in the
case of exploration. The Global Planner plans a finer reso-
lution trajectory following all waypoints within its planning
horizon plus the next waypoint outside. This allows for an
optimized trajectory that takes into account the traversability
map were it exists, but also enables planning towards a distant
waypoint (which results in a straight line trajectory outside
the local map, since no hazard information is available.

The Local Planner receives the global planner trajectory as
an input and plans a second trajectory with a much shorter
planning horizon (the limit of the level 0 map) using the
highest resolution (level 0) map level to avoid small-sized
obstacles. Additionally, any unknown terrain is considered
hazardous, since unknown map information at such close
proximity to the rover indicates that there are occlusions
either from positive or negative obstacles. The resulting
optimized trajectory is translated into twist commands which
are passed directly to the Mobility component that controls
the motion of the rover by issuing commands to the four in-
dividual wheel motors. If necessary both planners can revert
the drive direction of the rover, allowing for more flexibility
in environments with denser obstacle concentrations.

As our optimization based planning approach does not pro-
vide recursive feasibility guarantees, both planners deploy a
feasibility check after trajectory optimization to verify time
and collision constraints on the provided solution. If a plan
is infeasible, a feedback is send to the Agent Planner which
ultimately triggers a re-plan at the team planner level.

State Estimation Initialization and Global Pose Optimization

Since the state estimator calculates relative poses based with
respect to its starting location, it needs to be initialized
with an initial pose. At the beginning of an experiment an
estimate of the initial pose will be provided manually based
on observations from the lander situational awareness camera
(SACA), and distance measurements from an Ultrawide-band
(UWB) sensor. Each rover, and the base station on the lander
are equipped with this sensor, allowing for bidirectional dis-
tance measurements that are used in a Global Pose Optimiza-
tion module to estimate an optimized pose from rover poses
and UWB range measurements. The global pose optimization
uses a factor graph formulation where the rover poses are
graph nodes, and the edges are defined by delta poses of each
rover, and range measurements to the SACA and other rovers
(similar to the approach used by Autonomous PUFFER [14]).

UWB range measurements are taken periodically before and
during a drive, with the option to execute a Global Pose
optimization at each team planning cycle to reduced pose drift
incurred during the previous cycle and hence to increase the
precision of the team planner map that is assembled from
local rover maps that are fused in the distributed database
using the attached rover pose as location of the local map.
This merged global map is then used for the next team
planning cycle.

5. FLIGHT SOFTWARE
CADRE’s multi-agent autonomy and surface mobility algo-
rithms are implemented in C++14 with several dependencies
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Figure 9. Cascading motion planning approach: the autonomy provides a trajectory that the global and local planner
follow.

Figure 10. Global and local planner planning along a set of team planned waypoints.

on open-source packages, such as g2o [13] for the motion
planner optimizer, dlib for minimum cost assignment, and
OpenCV for map (image) processing functions. These al-
gorithms are primarily built into the flight software to run
on the CPU cores of the processor, while specific functions
are delegate to the GPU via OpenCL [2]. Ultimately, the
autonomy algorithms each map to a FPrime component that
is integrated into a full deployment.

FPrime

FPrime is an open-source framework for writing a flight soft-
ware system [1]. It is written in C++, and as a consequence,
CADRE’s flight software is written in C++14. FPrime
components have been developed to provide the core func-

tionality of the CADRE systems, such as motor controllers,
communication, sensor drivers, time synchronization, and
more. The FPrime deployment is run on the VOXL on
a Linux OS (specifically, within a Debian bookworm 64-
bit ARM chroot). A few daemons (e.g., camera driver)
that interface with 32-bit drivers (provided by ModalAI) run
outside of the chroot and communicate via IPC to a 64-bit
component within the chroot. The output of a build is a
FPrime deployment that can run on the target platforms–there
are two deployments: one for the base station and one for
the rovers due to differences in the hardware (including the
FPGA implementation).
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Algorithms as Libraries

CADRE’s development of autonomy algorithms started in
ROS (Robotic Operating System) due to ease of prototyp-
ing, as well as, prior implementations made available by
Autonomous PUFFER. However, it was planned that the
autonomy algorithms would eventually be part of the flight
software, and more specifically, a FPrime deployment. Con-
sequently, autonomy algorithms were written as libraries,
which are invoked by FPrime components, or automatically
generated using an autocoder, such as Navinci from the Mars
Ingenuity helicopter. In either case, the FPrime component
itself bridges data from ports, parameters, and other flight
software inputs to the autonomy algorithms, which after some
processing return outputs that can be sent back out via ports
(or returned as part of a command). Such an approach also
has the benefit that if CADRE’s autonomy algorithms need to
integrated into other frameworks, such as Space ROS or cFS
(core flight software), then that is possible by integrating the
libraries as-is into the new framework.

6. PRELIMINARY EXPERIMENTS
Although the actual lunar technology demonstration exper-
iments will occur in the future, CADRE has preformed a
variety of ground tests with various platforms to test its auton-
omy capabilities. These venues range from the Mars Yards to
a cleanroom at JPL. Some experiments were preformed on
3D printed rovers (called the ”Mercury 7”) with the same
COTS avionics and sensors, while others were performed
on develoment models that are similar to the flight units
aside from some missing hardware, such as solar cells on the
panels. Lastly, testing was also performed on the actual flight
units (rovers and base station) to ensure that the hardware and
software is ready for its demonstration on the Moon. All three
hardware platforms can be seen in Figure 11.

Figure 12 is a visualization of the combined autonomy data
and decisions (e.g., plans) from all four flight units (three
rovers and a base station) during a verification and validation
tests in a cleanroom. It was demonstrated that the flight
units (FMs) coperative and autonomous completed a success-
ful formation drive, as they would need to achieve on the
Moon. The base station execujted the leader functionality
by planning and scheduling for the team. When driving
out-of-formation, rovers reported to the leander and the sys-
tem replanned and continued to drive autonomously. Three
autonomous planning cycles were performed. In a second
experiment, it was verified that the team stops driving when
any rover violates its state-of-charge constraint (i.e., battery
is too low). A third experiment inclduded presenting the
team with a previously unmapped obstacle around which the
team replanned. Test operators started autonmy, but did not
intervene at any point.

In addition to these tests, the autonomy software has made
use of a variety of simulations and emulations to test various
capabilities that are not easily capture in a single testbed.
For example, lunar lighting conditions were simulated and
temperatures and state-of-charge emulated to test how the
system would behave under various conditions. Prior to
flight, ORT (operational readiness tests) will be used to test
the system’s effective performance with the operators in the
loop.

7. CONCLUSIONS AND FUTURE WORK
This paper presented the autonomy architecture of CADRE,
a technology demonstration mission slated to fly to the Lunar
surface in 2024. CADRE will demonstrate how a team
of three robots can autonomously perform high-level tasks
assigned by ground operators, including exploration and dis-
tributed measurements, while satisfying resource constraints
and replanning in response to new information in the system
or from the environment. We envision that lessons learned
from CADRE will enable future, bolder exploration of Solar
System bodies, addressing hitherto-unanswered questions in
planetary science.

Future work is likely to focus on understanding the scalabil-
ity of this approach to larger teams and when changes are
required to allow for larger deployments. Scalability can be
viewed not only in terms of the ability of the autonomous sys-
tem to coordinate its resources effectively, but also for human
teams on the ground to operate such a system. Another future
direction is to apply this architecture to a heterogeneous team,
where the roles and capabilities of each are more diverse. For
example, this work could be applied to allow future rovers
and helicopters to work together to cooperatively explore the
surface of Mars and other planetary bodies.
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