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Abstract

We present the design, implementation and testing of a multi-robot exploration algorithm for NASA’s
upcoming Cooperative Autonomous Distributed Robotic Exploration (CADRE) lunar technology
demonstration mission. The CADRE mission, among its various objectives, entails utilizing a trio of
autonomous mobile robots to collaboratively explore and construct a map of a designated area of the
lunar surface. Given the mission’s inherent constraints, including limited mission duration, constrained
power resources, and restricted communication capabilities, we formulate an exploration algorithm to
improve exploration efficiency, facilitate equitable workload distribution among individual agents, and
minimize inter-robot communication. To achieve these requirements, we employ a semi-centralized
exploration algorithm that partitions the unexplored area, regardless of its shape and size, into a
series of non-overlapping partitions, assigning each partition to a specific robot for exploration. Each
robot autonomously explores its designated region without intervention from other robots. We explore
the design space of the proposed algorithm and evaluate its performance under diverse conditions in
simulations. Finally, we validate the algorithm’s functionality through two sets of hardware experi-
ments: the first utilizes prototype rovers using a ROS-based navigation software stack for feasibility
testing, while the second employs high-fidelity development model rovers running CADRE’s custom
flight-software stack for flight-like performance validation. Both sets of experiments are conducted
in the Jet Propulsion Laboratory’s (JPL) lunar-simulated rover testing facilities, demonstrating the
algorithm’s robustness and readiness for lunar deployment.
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1 Introduction explore an unknown environment and build a
) ) data map. This problem has been extensively
In robotics, exploration refers to the problem studied in the context of both single [1] and

of using autonomous mobile robots (agents) to multi-robot teams [2]. Multi-robot teams hold a



distinct advantage over their single robot coun-
terparts, as they can collaboratively complete
exploration tasks more efficiently. Moreover, they
exhibit greater fault tolerance, a crucial attribute
in challenging environments.

Multi-robot exploration has found valuable
applications across diverse domains, including
planetary exploration [3] and search and rescue
operations during disaster missions [4]. Notably,
NASA has recently funded the development of
CADRE (Cooperative Autonomous Distributed
Robotic Exploration) [5, 6], a pioneering multi-
robot technology demonstration lunar mission.
CADRE’s primary objective is to deploy a team
of three autonomous mobile robots that will work
collaboratively to explore and gather data from
the Reiner Gamma Lunar region [7]. The prelimi-
nary mission objective is to explore and construct
a surface occupancy map, which will serve as a
foundational resource for subsequent mission oper-
ations. The success of CADRE holds great promise
for inspiring future multi-robot space expeditions
that will look for potential signs of life and ana-
lyze the geology and mineral composition of Solar
System bodies.

In the CADRE mission, agents must collab-
orate to explore an assigned area on the lunar
surface. The mission’s constraints, which include
limited mission duration, scarce power resources,
and constrained communication capabilities, dic-
tate the exploration algorithm we employ. These
constraints are driven by several factors, including
the need to actively manage the rovers’ thermal
state in the face of extreme lunar temperatures,
the need for slow, periodic rover recharging using
solar panels, the necessity to share limited commu-
nication bandwidth with other rover applications,
and concerns about electromagnetic interference
between communication, driving, and payload
activities. To effectively address these constraints,
we propose a multi-robot exploration algorithm
that employs a “divide and conquer” strategy.
This strategy involves selecting a “leader” agent
that partitions the unexplored area into sub-
regions, with each sub-region then assigned to a
robot for autonomous exploration (Fig. 1). Pre-
vious studies [8-10] have demonstrated the effec-
tiveness of this map-based partitioning approach
in expediting exploration missions.

This approach offers a number of attractive
properties:

1. Tt facilitates equitable distribution of compu-
tational resources among agents, resulting in
faster exploration.

2. It reduces inter-agent coordination demands,
especially during driving, as communication
solely occurs between the leader agent and its
counterparts and no communication is required
while the robots drive.

3. It reduces power requirements and the neces-
sity to manage inter-robot collisions, given the
absence of overlap between regions.

The main contribution of this work lies
in the design, implementation, and testing
of a map-partition-based multi-robot explo-
ration algorithm tailored for the CADRE
spaceflight mission. While the concept of a
map-partition-based algorithm [9, 10] is not novel,
our proposed algorithm distinguishes itself from
previous works by introducing a semi-centralized
approach. In this approach, a central agent
(dubbed a “leader”) performs map division and
agent assignment, and all agents subsequently
autonomously explore their assigned regions in a
decentralized manner without intervention from
the leader. In contrast, earlier approaches that
employ central entities for map partitioning also
retain centralized control over agent movements,
as discussed in Section 2.2. This key distinction
sets our algorithm apart and makes it well-suited
for achieving the objectives of the CADRE mis-
sion.

We note that the decision to use three robots
in this study is informed by the operational
requirements of the CADRE space mission. For
transportation to the lunar surface, robots are
planned to be attached to a lander [11] with
stringent physical and weight limitations, which
restricts the number of deployable robots. Addi-
tionally, the mission operates under significant
budget constraints, further limiting the feasibility
of including more than three robots. However, we
emphasize that our proposed algorithm is designed
to scale efficiently, supporting larger numbers of
robots if mission resources allow.

We also emphasize that a key contribution of
this work is the testing, verification, and valida-
tion of the proposed algorithms to the standards
required by a flight project. While a number of
exploration algorithms have been proposed in the
academic literature, infusion of such algorithms



Map-partition based multi-robot exploration
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Fig. 1: (1) shows a map with initial location of agents, explored and unexplored space. (2) Unex-
plored space is divided into partitions and agents start moving to their assigned partitions. (3) Agents
autonomously explore their assigned partition. (4) Agents complete exploring their partitions.

in a spaceflight mission introduces strict require-
ments in terms of computational complexity;
inter-agent communication; inclusion of telemetry
for observability, under tight constraints on overall
downlink bandwidth; and handling of interactions
with the rest of the autonomy stack.

The rest of the article is organized as follows.
Section 2 presents related work on multi-robot
exploration and places this paper’s contribution
in the context of the state of the art. Section 3
provides a formal problem definition. Section 4
discusses the design of the proposed multi-robot
exploration approach. Section 5 presents the
setup and results of the simulation experiments.
Section 6 provides the setup, results, and lessons
learned from the hardware experiments. Finally,

Section 7 concludes by summarizing the contribu-
tions and main results, and lays out directions for
future work.

2 Related work

In this section, we review the literature on
multi-robot exploration, focusing on key algo-
rithms and methodologies. We begin with an
overview of various multi-robot exploration strate-
gies, categorizing them into frontier-based, infor-
mation theory-based, and potential field-based
approaches. We then discuss frontier-based explo-
ration architectures, differentiating between cen-
tralized and decentralized schemes for assigning
frontier points to agents. Next, we highlight map-
partition-based methods and their advantages in



Testing the proposed multi-robot exploration algorithm at the Moon yard at JPL

Fig. 2: Testing the proposed algorithm at the Moon yard at JPL. The yard is cluttered with rocks,
craters and uneven surfaces to resemble lunar surface. The violet and green rectangles represent the map
partitions output by our algorithm corresponding to the two robots.

optimizing exploration efficiency compared to pre-
vious techniques. We also address the role of
communication in multi-robot exploration, exam-
ining how different strategies affect coordination
and overall exploration effectiveness. We conclude
with a discussion on multi-robot coordination in
lunar environments.

2.1 Multi-robot exploration
algorithms

In the existing literature, various multi-robot
exploration algorithms have been proposed, with
notable approaches falling into different cate-
gories, including frontier-based [2, 9], informa-
tion theory-based [12, 13], and potential field-
based [4, 14]. Frontier-based algorithms guide
robots towards “frontiers”, defined as points
on the boundary between explored and unex-
plored regions. Information theory-based meth-
ods direct robots to areas that either reduce
the overall entropy of the map or maximize
mutual information [15]. Meanwhile, potential
field methods employ a potential field function
[16] to guide robots towards unexplored areas
while keeping them away from already explored
regions. Among these approaches, frontier-based
exploration stands out as the most commonly
adopted due to its effectiveness and simplicity.

Multiple frontier-based methods have been pro-
posed [17] to minimize time [8], avoid redun-
dant coverage [18, 19], and reduce communica-
tion [20]. While frontier-based and information-
theoretic approaches have been presented as dis-
tinct methodologies, they are not mutually exclu-
sive; specifically, frontier points may be assessed
using information-theoretic metrics [21-23], a con-
cept that will be elaborated upon in the subse-
quent discussion.

In frontier-based approaches, a critical opera-
tion in each iteration involves the determination
of frontier points. The initial frontier-detection
method proposed by Yamauchi [1], suffered from
inefficiencies in that the entire map had to be
processed. In pursuit of enhanced computational
efficiency, various faster frontier detection meth-
ods have been proposed including Wavefront Fron-
tier Detector (WFD) [24], Fast Frontier Detector
(FFD) [24] and Expanding Wavefront Frontier
Detector (EWFD) [25]. These approaches inter-
nally use Breadth First Search (BFS) [26] to
iterate through only the explored cells to find
the boundary between explored and unexplored
cells. An alternate category of frontier-detection
approaches [27, 28] rely on employing Rapidly
Exploring Random Tee (RRT) algorithm [29]. The
advantage of RRT is that its growth is heavily
biased towards the unknown regions of the map



which inherently aids in exploration. In our imple-
mentation, we opt for an exploration approach
based on WFD due to its simplicity and efficiency.

When frontier-detection methods are run at
every iteration, they yield a set of candidate fron-
tier points. From the pool of these candidate
frontier-points, a best frontier point is deter-
mined. A prevailing methodology for selecting
the best frontier point is the utilization of util-
ity or cost functions, as highlighted by Daniel da
Silva Lubanco et al. [30]. These functions employ
various criteria such path cost [21], information
gain [21] , sensor data acquisition cost [21], geom-
etry of the environment [31] and likelihood of
communication success. In our implementation,
designed to meet mission constraints, we employ
a cost function that combines path cost, infor-
mation gain, and rotation cost enabling efficient
exploration. We acknowledge that this cost func-
tion is not novel and a modified version (only the
first two terms) has been used in previous work
[32]. Further insights into this cost function are
presented in Section 4.

2.2 Frontier-based exploration
architecture approaches

Frontier-based approaches can be categorized into
centralized [19, 33] and decentralized schemes [34],
depending on the entity responsible for gener-
ating frontier points. In centralized schemes, a
central entity, such as a base station or a leader
agent, is tasked with assigning frontier points to
individual agents. For instance, Banfi et al. [33]
employ Integer Linear Programming (ILP) on a
central base station to allocate frontier points
to each agent. This allocation ensures efficient
exploration while adhering to recurrent connectiv-
ity constraints. In contrast, decentralized schemes
involve individual agents autonomously selecting
their next frontier points. For example, Bautin
et al. [34] has individual agents determine their
next frontier point by considering factors such as
the proximity of other agents to frontiers and the
number of agents closer to a particular frontier. In
market-driven multi-robot exploration approaches
[35, 36], each agent generates a list of candi-
date frontier points in a decentralized fashion and
requests other agents to bid for the frontier; the
highest bidder gets awarded the frontier. Another
noteworthy category of approaches, particularly

advantageous in communication-restricted envi-
ronments, is role-based frontier-based exploration
[37]. In role-based frontier exploration, each agent
assumes one of two roles: explorer or relay. The
explorers are responsible for exploring the environ-
ment using frontier-based exploration and sharing
knowledge such as environment information (e.g.
obstacles, landmarks) and status update (e.g. bat-
tery, location) with a relay when they come within
communication range. The relays, in turn, trans-
mit this data to a central command center. In our
proposed scheme, we introduce a map-partition-
based approach that integrates elements from
both centralized and decentralized approaches.

2.3 Map-partition based
frontier-based exploration

A key aspect of multi-robot frontier-based explo-
ration is assigning frontiers to different robots to
reduce the overall mission time for exploration [9].
Previous approaches [8-10] have suggested achiev-
ing this objective by partitioning the environment
into distinct regions and assigning frontier points
within these regions to individual robots for explo-
ration. For instance, Wurm et al. [9], Lopez Perez
et al. [10], and Wu et al. [38] have utilized
Voronoi partitioning to segment environments like
rooms and corridors, while Solanas and Garcia [8]
employed K-means-based partitioning for environ-
ment segmentation. Subsequently, these methods
utilized the robot’s location to determine the
robot-region assignments.

In alignment with these techniques, we pro-
pose the utilization of a map-partition approach
in our work. Our approach diverges from these
methods in several key aspects. Firstly, Wurm
et al. [9] and Solanas and Garcia [8] divided
the map into regions and assigned frontiers to
robots within a region in a centralized manner.
Wurm et al. [9] also recalculated new parti-
tions at each iteration. In contrast, our algorithm
empowers agents to individually determine fron-
tier points within their assigned static regions
in a decentralized fashion. Secondly, Lopez Perez
et al. [10] shared maps between different robots,
with agents individually calculating their Voronoi
partitions. In our approach, we employ a central-
ized entity to partition the map. Our approach
effectively combines key advantages of both decen-
tralized and centralized methods, enabling agents



to autonomously explore individual subregions
(which reduces inter-agent communication while
agents drive) while reducing duplication of com-
putation of Voronoi partitions, and removing the
possibility of disagreement between the agents
on the subregions themselves. While introduc-
ing a central entity does raise concerns about a
single point of failure, the CADRE project miti-
gates this issue by implementing a leader election
scheme (described in [5, 39]) to select an alternate
leader agent if the current one becomes disabled
or otherwise unable to perform its duties.

An additional distinction from previous works
lies in the testing environment. Previous studies
predominantly focused on testing either in simula-
tion [8, 10] or within indoor office-like structured
environments [9]. In contrast, we have conducted
extensive verification and validation for our explo-
ration algorithm in a Lunar analog outdoor setting
featuring obstacles and craters that closely resem-
ble the lunar surface (Fig. 2). This choice is critical
to align our testing conditions with the unique
challenges of CADRE’s mission objectives, and
ensure that the proposed approach is sufficiently
mature for infusion in a flight project.

2.4 Communication in multi-robot
exploration

Communication is essential for multi-robot explo-
ration as it affects the coordination between
robots [40]. Inefficient coordination may lead to
poor exploration efficiency, with the same areas
being visited multiple times by different robots.
Prior research has delved into diverse communica-
tion strategies [33] to facilitate multi-robot explo-
ration coordination. While providing an exhaus-
tive treatment of these strategies lies beyond the
scope of this work, we highlight three common
scenarios frequently employed: 1) Full communi-
cation, where communication is always available,
2) Periodic communication [41], where commu-
nication is available periodically and 3) Recur-
rent communication [33], where communication
is available only at the deployment locations. In
the CADRE mission, agents frequently turn off
their on-board CPUs to manage their thermal and
power state [5], and collectively wake up their
CPUs at agreed-upon times at 30-minute inter-
vals. The approach in this paper only requires
inter-agent communication when the agents wake

up to share exploration progress and recompute
and share subregions to explore; in this sense,
the approach is reminiscent of periodic commu-
nication. This communication requirement could
be further relaxed to have the agents only com-
municate at the beginning of the mission (to
assign subregions) and at the end of the mission
(to report the locally explored maps), resulting
in further reduced communication at the cost of
potentially slower exploration.

2.5 Multi-robot coordination in
lunar environments

There are several works that address discuss
multi-robot lunar exploration, co-operation and
task allocation. For example, Cordes et al. [42]
introduce LUNARES: Lunar Crater Exploration
with Heterogeneous Multi-Robot Systems, where
they describe a system for exploring lunar craters
using a heterogeneous team of robots, including
ground and aerial vehicles that collaboratively
explore complex lunar terrains. They leverage
each robot’s unique capabilities—such as mobility
in rough terrain or an aerial perspective—to over-
come specific environmental challenges, achieve
efficient coverage, and map previously inaccessible
areas. Rocamora Jr. et al. [43] present a multi-
robot framework designed to efficiently search for,
excavate, and transport lunar mineral resources.
Their study emphasizes collaborative strategies
among simulated robots to navigate a realistic
lunar environment while tackling challenges such
as mobility hazard estimation, immobility recov-
ery, and cooperative task planning. Additionally,
the work by Cordes et al. [22] discusses a mod-
ular approach to developing multi-robot systems
for exploration tasks, emphasizing the flexibility
of heterogeneous robots that can be reconfigured
to adapt to various mission requirements and
environmental challenges. Finally, Thomas et al.
[44] focus on task allocation and management
for robots involved in lunar habitat construction,
emphasizing adaptability to changing conditions
and energy optimization during tasks such as
transporting, mapping, and clearing.

Our work differentiates itself by focusing on
a comprehensive exploration pipeline that was
matured to a high technology readiness level



(TRL) [45] to meet the demands of lunar sur-
face exploration. Specifically, centralized parti-
tioning and subregion allocation at the leader
ensures conflict free decisions across a team of
this size (primarily imposed by mass-volume pay-
load constraints). Secondly, subregion exploration
decisions (i.e., frontier selections) are delegated
to individual rovers to eliminate the overhead of
coordination with the leader or other rovers unless
a team-level event requires replanning (e.g., attri-
tion). Consequently, the network is kept free for
downlink unless otherwise necessary.

A shortened and modified version of this doc-
ument appears as a chapter in Sharan Nayak’s
dissertation [46].

3 Problem definition

In this section, we first define the general multi-
robot exploration problem and then describe its
specific instantiation as addressed by the CADRE
mission.

Let M C R2 denote the workspace in which
n agents A = {ai,...,a,} operate, with cor-
responding initial positions Q = {q1,...,qn}
Let U C M represent the unexplored space and
E C M represent the (explored) space, such that
M = U U E. Each agent a; constructs its own
local environment representation R; as it explores
its assigned region. The global environment rep-
resentation Rgiobal is created by merging all local
representations R;, yielding a unified understand-
ing of the workspace. Given (A, Q, U), the
objective of multi-robot exploration is to move
agents in U such that they collectively explore U
(i.e., the agents cover every point in U with their
sensor footprint, with the exception of points that
cannot be reached because they are surrounded by
impassable obstacles).

Specifically, the approach proposed in this
paper decomposes the multi-agent exploration
problem in four subproblems.

e Partitioning: Partition the desired region to
explore M with unexplored space U C M into
n regions R = {ry,...,r,} such that M =
U, 7 and r; Nr; =0 for i # j.

e Assignment: Compute an assignment K
Q — R such that agent a; explores region ;.
¢ Single-Robot Exploration: For each agent

a;, compute a sequence of locations within r; to

be visited, ensuring complete coverage of r; by
the agent’s sensor footprint.

® Merging: During exploration, periodically
merge the local environment representations R;
generated by each agent into a unified global
representation Rglobah ensuring an accurate and
cohesive depiction of the explored space.

Note that although the workspace is specified
as two-dimensional to simplify the problem def-
inition, 3D elevation maps incorporating terrain
slope and height are utilized during hardware val-
idation. This integration, which allows the robots
to navigate challenging terrain such as rocks and
craters typical of lunar environments, is detailed
in Section 6.2.1 and 6.2.2.

Proposed multi-robot exploration
architecture
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Fig. 3: Leader agent divides the unexplored space
into disjoint partitions and then assigns a parti-
tion to an agent. Each agent individually explores
its partition without communication of its frontier
points with other robots.

4 Algorithm design

The work in this paper is motivated by key mission
objectives including the elimination of redundant
coverage, reduction in mission time, and judicious
use of communication resources among the par-
ticipating agents. These objectives are achieved
through the implementation of a map-partition-
based exploration algorithm. In this algorithm,
an elected leader agent (as depicted in Fig. 3)
undertakes the responsibility of dividing the unex-
plored space into a collection of non-intersecting



partitions and subsequently assigning these par-
titions to individual agents (Algorithm 1). Once
assigned, each agent proceeds to autonomously
explore its designated partition without any exter-
nal intervention from other agents (Algorithm
3).

It is important to emphasize that, while the
leader agent plays a pivotal role in the partition
assignment process, the proposed algorithm is best
described as semi-centralized rather than central-
ized. This distinction is drawn because, despite
the leader agent’s involvement in the initial allo-
cation of partitions, the agents subsequently oper-
ate independently within their assigned regions,
exploring without reliance on the leader agent.
The leader agent gets re-involved in the explo-
ration process only if one of the agents gets stuck
or malfunctions during the exploration process.
Thus, although the robots explore their assigned
regions independently, the mission still requires a
level of coordination between the leader agent and
other agents for partitioning and maintaining the
overall system’s functionality.

A broader discussion of leader selection meth-
ods is outside the scope of this paper; we refer the
interested reader to [39] for a description of the
leader election algorithm used by CADRE.

We present the algorithm part that runs on the
leader agent in subsection 4.1, and the algorithm
part that runs on the agent in subsection 4.2.

4.1 Region generation on leader

The leader agent executes three key computa-
tions (Fig. 4) - map partition, robot-partition
assignment, and boundary computation.

4.1.1 Map partition

The map-partitioning algorithm (line 1 in Algo-
rithm 1) is responsible for dividing the unexplored
map into m non-intersecting partitions, one for
each robot. To satisfy the mission constraints of
uniform work allocation among the robots, we
require a map-partitioning algorithm that pro-
duces approximately uniform-sized partitions. We
considered two algorithms - Voronoi-based parti-
tion [47] and K-means-based partition [48]; addi-
tional detail on these approaches is provided in
the Appendix. Following extensive experimenta-
tion and evaluation, described in Section 5, we

chose to implement the K-means algorithm (Algo-
rithm 2). The final step in the map-partitioning
algorithm (Algorithm 2) uses the computed cen-
troids from K-means to generate the regions such
that M = |J;_, r;. That is, the cluster centroids
are computed using exclusively the unexplored
space U, ensuring that the unexplored space is
partitioned approximately uniformly among the
agents; however, every point in the workspace,
including explored points, is assigned to an agent.
This allows the frontier selection algorithm to
consider all prior knowledge of the workspace
from other agents, including obstacles, so that a
point that has been marked as an obstacle by
an agent is not selected as a frontier point by
another agent. Furthermore, the frontier search
described in Section 4.2 requires the regions to be
spatially connected in order to find the optimal
solution. We achieve this by labeling the entire
workspace, mitigating the likelihood of generating
spatially-disconnected regions.

We use a grid map representation of the envi-
ronment. The input to the map-partitioning algo-
rithm are the unexplored grid cells, and the initial
location of robots. Initially, no prior information
about the internal structure of the area or spe-
cific obstacles are provided. The initial unexplored
map layout is transmitted by the ground opera-
tors on Earth. Periodically, as agents wake up in
a coordinated fashion, they re-partition the region
to explore. To do this, as mentioned in Section
3, the robots send their local maps to the leader,
allowing the leader to utilize an updated merged
map for partitioning. The location of obstacles is
inflated by the enclosing radius of the rover, which
allows the exploration planner to treat individual
robots as points.

Map-partition and assignment in leader
agent

Robot Leader Agent
locations

Map Centroids | Assignment | Assignments [ Send to Regions
Workspace Partition Generation Agents (one for

each robot)

Regions

Fig. 4: Leader agent performs map-partition to
divide map into regions, computes the assign-
ments, and sends the region to each corresponding
agent.



Algorithm 1: LeaderAgent (M, U, n, Q, A)

1 R « MapPartition(M,U,n)
2 K < GetAssignment(Q,R)
3 for i+ 1 ton do

4 L SendToAgent(a;, ;)

Algorithm 2: MapPartition (M, U, n)

// KmeansAlgorithm. C is the centroids
set
1 C ¢ InitializeCentroids(U, k)
for ¢ < 1 to mazlterations do

[

3 R < AssignClusters(U, C)
// Cpew is the updated centroid set
4 Cew ¢ updateCentroids(U, C, k)
5 if CentroidsConverge(C, C,,c,,) then
6 L break
7 C= Cnew
8 // Assign clusters one last time with M

9 R < AssignClusters(M, C)
10 return R

4.1.2 Robot-partition assignment

This module assigns a partition to an agent (line 2
in Algorithm 1). We use the Hungarian algorithm
[49] to determine the optimal mapping between
partition and agent. A variety of cost functions can
be used within the Hungarian algorithm to deter-
mine this mapping; in our experiments, we have
employed the distance between the robot’s cur-
rent location and the centroid of the partitioned
regions.

Algorithm 3: Agent, (b;, c(f))
1 7; < Region(b;)
2 while U N UnexploredRegion(b;) # 0 do
3 F; + GetFrontierPoints(r;)
/b, < GetBestFrontierPoint(F;,c(f))
4 MoveRobotToFrontierPoint(fp,)

4.2 Frontier-based exploration on
every agent

The agents use a frontier-based algorithm [1] for
exploration due to its speed and simplicity. There
are three components (Fig. 5) to the proposed
frontier-based exploration approach: 1) Frontier

points generation within the assigned partition 2)
Calculation of the best frontier point using a user-
defined cost-function, and 3) Navigation to the
frontier point.

Agent exploration

Agent

L No
Frontier Point  |FPs | calculate |FP) L Finished
(FP) Generation Best FP | e Explored? E_xp'loration

Fig. 5: Each agent calculates frontier points
within the assigned partition. The agent then uses
the cost function in Equation (1) to calculate the
best frontier point. This frontier point is input
to the rovers’ single-agent surface mobility stack,
which calculates the best path and move towards
to it. This process is repeated until the region is
fully explored - i.e., there are no more reachable,
unknown parts of the region.

v

Boundary

4.2.1 Frontier point generation

A frontier is defined as the boundary between
explored and unexplored space. We employ BFS
[26] to determine the frontier cells and use Divisive
Hierarchical K-means clustering [50] to cluster the
frontier regions. The frontier region’s size is deter-
mined by the sensor footprint view radius, which
is a function of the sensor’s depth and the Field
of View (FOV).

We use the region centroids as the correspond-
ing frontier points (line 3 in Algorithm 3). The
frontier points represent the potential locations
the robot can move towards to uncover new space.
We note that although each agent maintains a
copy of the global unexplored map, Our frontier
generation algorithm ensures that the search and
selection of frontier points are restricted to the
agent’s assigned region or partition. This is done
by simply not considering any explored cells out-
side the partition while iterating through explored
cells while performing BFS. We note that in our
initial simulation and Mercury-7 experiments, we
represented the region as a convex hull, with
points outside the region ignored using the even-
odd algorithm [51, 52]. However, for the more
recent Development Model (DM) experiments,
we replaced the convex hull representation with



a labeled map. In this labeled map, grid pixel
values of 71”7 indicate assigned areas, while val-
ues of ”0” denote non-assigned areas. Although
this approach increases the size of the transferred
regions, it ensures that there is no overlap between
regions in degenerate cases and facilitates efficient
rejection of unassigned points during the BFS
process.

Due to the non-zero size of the robot’s sensor
footprint, there is a possibility of some overlapping
coverage when the robots explore the area near
the partition boundaries, even though the frontier
points lie inside a robot’s assigned partition. This
is reduced by periodically merging all robots’ local
maps into a global map, and updating the robot’s
local map with the global map.

Algorithm 4: UpdateTabooList (Pgontiers Panchors Ranchor Ttaboo)

// d is the distance between new frontier and
current candidate taboo point
1 d < GetDistance(Prontier; Panchor)
// If the new frontier point is far from the
candidate taboo point, reset the candidate
if (d > Taboo) 07 (Ranchor = 0) then
Panchor ¢ Prrontier
hanchor —1

N

W

// If the new frontier point is close to the
previous one, increase the number of hits
5 else
L hranchor <~ hanchor +1

// If we sent enough points close to the
candidate, add it to the taboo list

if h > Eunchor then

8 taboo_list.append(Panchor)

9 L h+0

(=]

<

4.2.2 Determination of the best
frontier point

The best frontier point, denoted as f;, for agent a;,
is selected from a set of candidate frontier points
F; based on its utility or cost function (line 3 in
Algorithm 3). Various utility and cost functions
have been utilized in prior frontier-based explo-
ration research, and a comprehensive review of
these functions can be found in [30]. In this work,
the cost function c¢(f) incorporates three terms,
as expressed in equation (1), tailored to meet the
mission constraints. The first term, d(f), repre-
sents the distance between the current robot’s
location and the potential new frontier point. We
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introduce this term to penalize longer travel dis-
tances, ultimately reducing power consumption.
The second term, u(f), quantifies the informa-
tion gain, reflecting the amount of unexplored
space that would be uncovered upon reaching the
frontier point. This term serves to enhance explo-
ration efficiency. The third term r(f), captures
the smallest rotation amount needed to rotate
the robot from its current heading to the frontier
point “heading”. The frontier point heading is the
heading of the vector connecting the robot and
the frontier point. We include this term to study
penalizing rotational motion as it causes more
wear and tear on the wheels than linear motion.

The mathematical notation for ¢(f) is as fol-
lows:

o(f) = wid(f) + wau(f) +wsr(f) (1)
where w1, wsy, and w3 are the weights associated
with d(f), u(f) and r(f) respectively. The frontier
point is chosen as the one with the lowest cost.
In practice, the weights can be selected
through various approaches like empirical tun-
ing based on mission priorities, grid or random
search [53], optimization based approaches [54] or
machine learning [55] approaches. A higher w,
will prioritize frontier points closer to its current
location whereas a lower w; will choose frontier
points away from its current location. A higher wo
improves the quality of exploration, especially in
areas with high uncertainty or unexplored regions
whereas a lower ws causes robot to visit frontier
points that are closer or easier to reach, pos-
sibly leaving high-information areas unexplored.
Finally a higher w3 prioritizes frontier points that
require less rotation to align with the robot’s
current heading, making the robot’s movements
smoother. However a lower ws lead to missed
exploration opportunities, as the robot might
avoid significant heading changes even when they
could yield high information gain. For CADRE,
the weights were tuned empirically after signifi-
cant experimentation, described in Section 6.

4.2.3 Taboo list search

An application-inspired addition to the frontier
selection algorithm was the addition of a feature to
keep track of frontier areas that a rover repeatedly



fails to reach, and exclude them from subsequent
frontier point calculations. We observed in hard-
ware experiments that, occasionally, the rovers’
navigation stack would be unable to navigate to
frontier points, despite the existence of a free path
between the rover’s location and the frontier point
in the map. This phenomenon can be caused by
discrepancies between local maps used for collision
avoidance and the map used for exploration, or by
wheel slip causing insufficient progress toward a
goal. In order to allow the exploration algorithm
to autonomously recover from such situations,
we implemented a “taboo list search”, shown in
Algorithm 4.

When candidate frontier points are scored
according to Equation 1, frontier points that lie
within the prescribed radius of a point in the
taboo list are excluded; this ensures that, after
sufficient failures to progress to a given region, the
rover will move on to a different region.

The taboo list is periodically cleared when the
robots reboot, ensuring that temporary surface
mobility misbehavior (caused, e.g., by transient
lighting conditions) does not cause the robot to
ignore parts of the environment permanently.

The taboo list was only used for the DM hard-
ware experiments described in Section 6.2, which
demonstrated the effectiveness of the approach in
challenging environments, as reported in Section
6.2.2 and Table 3.

4.2.4 Surface Mobility

The final operation in the agent-based explo-
ration is navigating to the frontier point (line 4
in Algorithm 3). CADRE’s surface mobility plan-
ner combines a global and local planner, similar to
[56]. The global planner uses the currently avail-
able global map to build a high-level collision-free
path to the frontier point. The local planner is
myopic and uses incoming sensor data to plan a
path in the robot’s immediate vicinity. In our sim-
ulation and Mercury-7 hardware experiments, the
agents use Dijkstra’s algorithm (specifically, the
Navin ROS implementation) [56] for the global
planner and TEB [57] for the local planner while
for the DM experiments, both global and local
planners use a Time Elastic Band (TEB) imple-
mentation over different horizons to plan a rover’s
path to a frontier point. The local planner is also
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capable of turn-in-place maneuvers that are lim-
ited to 90° to avoid excessive sinkage in the lunar
regolith. This capability is also required due to
the rover’s non-zero minimum turn radius when
driving forwards (or backwards). The process of
calculating and moving to the frontier points is
repeated until a desired percentage of the region
of interest (including potentially the entire region)
is explored (line 1 in Algorithm 3).

4.3 Event handling

Autonomous exploration relies on the capability
to handle, and in some cases recover from, events
on-board a rover (i.e., local) and across the team
(i.e., system-level). Specifically, individual rovers
must be able to handle the case where they are
unable to reach a selected frontier point, while the
team must be able to recover from the event that a
rover is unable to continue to participate in explo-
ration. We will describe how these two events are
handled by our implementation.

4.3.1 Local event handling: surface
mobility failures

Exploration manages the feedback from the plan-
ners of the surface mobility stack. The planners
may report a failure due to inability to reach
the frontier point before a provided timeout, or
exceeding a number of failed attempts to plan
a trajectory to the waypoint. These failures can
occur, for instance, if mapping reports a region
as traversable but the surface mobility planners
are unable to find a feasible trajectory within
that region. Another reason is when the frontier
point is placed too close to an obstacle. Recall
that, before the frontier point is computed, the
obstacles in the grid map input are inflated by
the rover’s enclosing radius to avoid placing fron-
tier points at unreachable locations. However, as
the rover drives towards a frontier point, map-
ping can reveal an obstacle in a region that was
previously marked unknown and near the frontier
point. This can result in the surface mobility plan-
ners being unable to find a feasible trajectory to
the waypoint. Both cases are handled by recom-
puting a new frontier point with an updated rover
pose and an updated merged map. If the same
frontier point is computed multiple times sequen-
tially, but not reached, then exploration inserts
the point into the taboo list described in Section



Different layouts of unexplored space used in simulation experiments

Map layout 1

Map layout 2

Map layout 3

Map layout 1 partition Map layout 2 partition Map layout 3 partition

[ Unexplored Space <>
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Bl Explored Space mm Obstacle
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Fig. 6: For each layout, we run 50 trials with randomized obstacle environments. Note that the obstacle
locations are unknown to all robots at the mission start and until the locations are detected using the

robots’ sensors.

4.2.3. Consequently, exploration is robust to sce-
narios where the surface mobility system reports
failure, without compromising additional regions
to explore.

4.3.2 System-level event handling:
changes in team participation

During exploration, agents may malfunction or
become stuck, requiring a failure detection mech-
anism to maintain mission continuity. Our system
achieves this through the notion of a semi-static
participation list (i.e., who should be participat-
ing?) and a network link status (i.e., is this agent
awake and running FSW?).

Each rover maintains a list of agents “partic-
ipating” in exploration. The list can be updated
by ground operators; an early implementation
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also allowed agents to marked other agents as
non-participating based on inter-agent heartbeat
pings; however, the functionality was descoped
from the final flight software.

Changes in the participation list do not result
in immediate replanning: if a rover is added to
the exploration team, it starts idle, and, if a rover
is removed from the exploration team, its region
remains temporarily unexplored. Upon the next
reboot, however, the team planner re-partitions
the region based on the set of participating agents,
allowing for addition or removal of agents during
exploration.

An early implementation of exploration re-
assigned regions to agents immediately whenever
a rover joined or left the team; the change to
only re-assign regions upon reboot was motivated



Progression of a simulation mission for map layout 1
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Fig. 7: Workspace initialization. The second figure (from left) shows the workspace partition into 4
regions, one corresponding to each robot. The third figure shows region exploration by their assigned
robots. The last figure shows exploration completion.

by concerns about “chattering” where one mal-
functioning agent may leave and rejoin the team
repeatedly, resulting in frequent replanning and
lack of progress.

In the next two sections, we present the sim-
ulation (Section 5) and hardware experiments
(Section 6) conducted to validate our proposed
approach.

5 Simulation experiments

We conduct a series of simulation experiments
to thoroughly evaluate the effectiveness of our
design choices. We provide the simulation setup
in subsection 5.1 and the simulation results in
subsection 5.2. In both simulation and Mercury-7
hardware experiments, we consider the explo-
ration mission to be completed when at least 95%
of the total area has been explored.

5.1 Simulation setup

The simulation environment is ROS-based of size
30m x 30m (Fig. 7) with obstacles interspersed
between free space. The obstacle locations are
unknown to the rovers at the start of the exper-
iments. We perform planning on a grid map
overlaid on top of the environment with a size of
150 x 150 cells (0.2 m/cell resolution). We run
experiments for 3 scenarios (Fig. 6), each hav-
ing a different layout of unexplored space. The
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layouts feature distinct characteristics, including
peaks, troughs, rounded and straight edges, which
allow us to evaluate the performance of the pro-
posed exploration algorithm under diverse condi-
tions. The three different layouts were selected to
demonstrate two primary aspects: first, that the
partitioning algorithm can adapt to various shapes
of unexplored space, and second, that the frontier-
based exploration algorithm, combined with the
proposed cost function, can effectively navigate
and explore areas of diverse geometries.

For each scenario, we run 50 trials using
environments with randomized obstacle locations,
each with 3% obstacle Cumulative Fractional
Area, or CFA [58] — a very conservative estimate
of the CFA that CADRE expects to encounter at
Reiner Gamma. The 4 rovers in the experiments
have differential drive dynamics, and dimension
of 0.25m (length) and 0.20m (width). The agents
have a sensor footprint of depth 2m and FOV 90°,
and a maximum velocity of 2m/s. For each exper-
iment, we evaluate as performance metrics the
total exploration time, average distance traversed
by agents, the maximum distance travelled by any
agent, and number of messages sent by the base
station to agents. We implement the algorithms in
C++ and run the experiments on a system with
Intel i7-7700 4-core CPU with 32GB RAM.

In the comparative analysis, we evaluate our
design choices by comparing four versions of



the proposed algorithm. The first two versions,
Proposed-K and Proposed-V, utilize K-means and
Voronoi map partitions, respectively. These algo-
rithms initialize K-means centroid locations and
Voronoi generator points using agent locations.
Frontier-point selection in these algorithms is
guided by the cost function defined in equation
(1), with parameters set as w; = 1.0, wy = 0.6,
and ws = 0.25. The last two versions, Random-K
and Random-V, differ in that they select frontier
points randomly, without considering the speci-
fied cost function. A summary of the distinctions
between these algorithm variations is provided
in Table 1. Additionally, we include a central-
ized algorithm [33], referred to as “centralized”
in our experiments, which relies on a central
entity to generate frontier points for each agent
at each iteration. Specifically, we adopt the sec-
ond of the two centralized approaches proposed
by [33], known as the two-stage approach in their
work. This algorithm operates under recurrent
connectivity constraints to ensure connectivity at
frontier locations. The centralized strategy was
included in the comparison for two primary rea-
sons. First, the precursor to CADRE, known as
A-Puffer [59], was evaluated using the central-
ized approach in [33], which was found to be
comparatively inefficient in terms of communica-
tion overhead and distance traveled by the robots.
Including this strategy provides historical context
and underscores the improvements achieved by
our semi-centralized approach. Second, the cen-
tralized strategy serves as a baseline for evaluating
metrics such as distance traveled and communi-
cation overhead, highlighting the advantages of
the proposed semi-centralized approach, which
demonstrates clear improvements over the com-
monly employed centralized strategy.

Partition Frontier-selection
Algorithm K- Voronoi | Cost Random
means func. (1)
Proposed-K v v
Proposed-V v v
Random-K v v
Random-V v v

Table 1: Different variations of our proposed algo-
rithms used in simulation experiments to test our
design choices
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5.2 Simulation results

We show a simulation mission progression in
Fig. 7 and the experiment results in Fig. 8.
The proposed exploration algorithm (Proposed-
K) performs the best in the metrics of mission
completion time, average distance traveled, and
maximum distance traveled. Proposed-K performs
better than Proposed-V as the former produces
better uniform-sized partitions, which leads to a
more even distribution of work among the agents.
In addition, our algorithms perform better than
their corresponding versions (Random-K,V) that
use the random frontier selection policy, which
shows the advantage of using our cost function to
improve exploration efficiency.

6 Hardware experiments

Once the partitioning strategy was selected,
we evaluated the performance of the proposed
approach through extensive hardware experiments
on two sets of hardware: a mid-fidelity hard-
ware platform, dubbed Mercury-7, equipped with
a ROS-based mobility stack that allowed for
rapid iteration and experimentation; and high-
fidelity Development Models (DM) that faith-
fully reproduce the hardware and flight software
that will be used by CADRE on the lunar sur-
face. The Mercury-7 rovers had a Dubins-vehicle
dynamics with a minimum turning radius whereas
the DM rovers had Differential-drive dynamics
that allowed rotation in place. We describe the
hardware configuration, testing environment, and
results of the Mercury-7 and Development model
rovers in subsection 6.1 and subsection 6.2, respec-
tively, and the lessons learned in subsection 6.3.

6.1 Mercury-7 rovers

We utilize two prototype rovers that provide a
mobility and sensing platform representative of
the CADRE flight rovers (Fig. 9). Each rover is
equipped with a ModalAI Voxl-2 board featuring
a Snapdragon 821 processor for sensor data pro-
cessing and execution of flight code. The rovers
are equipped with stereo cameras offering a res-
olution of 1600 by 1300 pixels and a maximum
frame rate of 30 Hz; in operations, the frame rate
is reduced to 5 Hz to manage data processing load.
The CPU and cameras are analogous to the flight
articles’. To drive the rover, each wheel employs



Simulation experiment results
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Fig. 8: Performance metrics for scenarios 1 (top),
2 (middle), and 3 (bottom). For each scenario, we
run 50 trials of each algorithm. The algorithms
proposed in this paper are highlighted in green.

a DYNAMIXEL servo dc motor; the motors are
connected in a daisy chain configuration, linked
to the processor via a USB communication con-
verter for serial-to-USB conversion. A lithium-ion
battery provides a 12V power source for the rover,
and power distribution is managed through a
dedicated power distribution board. The rovers
are equipped with a protruding WiFi antenna to
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enable long-range communication with the base
station. The rover’s chassis and wheels are 3D
printed, with the wheels featuring grousers for
enhanced traction and the ability to navigate over
small obstacles like rocks. The maximum linear
velocity of the rovers is set to 0.05m/s.

A stationary laptop with an Intel i7-8750H 6-
core CPU with 16GB RAM acts as the leader
agent, which performs the region partition, and
then relays the regions to the robots using 802.11n
WiFi. Throughout the exploration process, each
robot continuously updates its individual obstacle
map and periodically transmits these updates to
the leader. The leader agent employs the multi-
robot merge package [60] to consolidate the local
maps into a unified merged map.

6.1.1 Mercury-7 test environment

We perform the hardware experiments on the
Mercury-7 rovers at JPL’s Moon Yard. The yard
is cluttered with rocks, small boulders, and craters
to mirror the lunar surface. We design three dis-
tinct scenarios to evaluate the effectiveness of
our proposed algorithm. The first two scenarios
involve the exploration of rectangular regions mea-
suring 6m by 6m and 8m by 6m, respectively, with
variations in obstacle and crater layouts. In the
third scenario, we conduct a resilience test in 6m
by 6m region to ensure that exploration can con-
tinue even if one of the robots fails to explore. In
all the described scenarios, we use K-means algo-
rithm to perform map partitioning. The weights
in equation (1) are set to w; = 1.0, we = 0.6,
and ws = 0.0, with the rotational cost excluded
to reduce complexity.

6.1.2 Visual-guided navigation pipeline

On the Mercury-7 rovers, we employ a stereo
imaging system to perceive the environment. The
choice of using a stereo camera system is driven by
its advantages in terms of lightweight design, low
power-consumption and cost-effectiveness. The
term ”lightweight” refers to the compact size and
reduced physical weight of the stereo camera hard-
ware, particularly when compared to sensors like
LIDAR or depth cameras. The stereo camera gen-
erates a synchronized pair of images which is given
as input to the stereo module and localization
module (Fig. 10). The stereo module comprises
a disparity sub-module responsible for generating



CADRE Mercury-7 rovers

Fig. 9: Close-up view of prototype Mercury-7 Lunar rovers that employ a ROS-based navigation stack.
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Fig. 10: Visual-guided navigation pipeline used in the CADRE rovers.

the disparity image [61] which is then given as
input to the “undistorted” sub-module to produce
the undistorted image. The undistortion relies on
knowledge of a camera distortion model, which is
derived via camera calibration [62] before the start
of the mission. We use the Kalibr toolbox [63]
to perform camera calibration. The undistorted
image is given as input to a point cloud library
(PCL)[64] that produces a detailed point cloud
representation of the image (Fig. 11). Simultane-
ously, the stereo images are fed to the localization
module. This module tracks key feature points
across images, leading to the generation of visual
odometry [65]. The point cloud data and odometry
are both fed to an elevation mapping module [66]
which outputs an elevation map, capturing height
variations. The elevation map, in turn, is fed to
the traversability estimation module [67] to pro-
duce a traversability costmap. This costmap is a
2D grid with each grid cell representing the terrain
traversability based on its height and slope. We
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use a threshold to determine if a cell is traversable
or not based on the robot’s capability. Primilar-
ily, the robot’s traversability is determined by its
wheel design including wheel diameter and grouser
setup. We intentionally avoid complex features
like surface friction in the costmap to reduce com-
putational complexity. The costmap is used by the
navigation stack to traverse the terrain. We use
the ROS move_base [68] package to handle accept-
ing goal inputs and move the robot to the desired
positions using the ROS navigation stack.

6.1.3 Mercury-7 experiment results

We present the results of the Mercury-7 rover
hardware experiments for the first two scenarios
in Table 2, where each data point represents the
mean of three trials. The robots demonstrated
their capability to efficiently compute intermedi-
ate frontier points and autonomously explore their
designated regions, as visualized in Fig. 12. As
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Fig. 11: Original image showing a crater (negative obstacle) in the front of the rover and the correspond-
ing point cloud in top view and side views. The different point colors represent different heights.

expected, the exploration of the larger area in Sce-
nario 2 naturally required more time compared to
the exploration of the smaller area in Scenario 1.

The resiliency experiment’s progression is visu-
alized in Fig. 13. Initially, two robots embark
on the exploration mission, but a simulated fail-
ure occurs where one robot fails proceed with
exploration. This failure mimics situations where
a robot has to stop due to thermal and power
constraints, or hardware failures. In response,
the base station dynamically re-partitioned the
regions, taking into account only the active robot.
Subsequently, the active robot continued its explo-
ration and successfully completed the mission.
Note that in our experiment, we manually simu-
lated robot failure and updated robot count from
2 to 1 to recompute the partitions. However, the
CADRE mission plans to implement a set of fault-
protection mechanisms to autonomously detect
robot availability, and trigger a replan in response
to changes in the robots’ statuses.

6.2 Development-Model (DM)

rovers

A second set of hardware experiments were per-
formed on the base station and two development
model (DM) rovers based on the flight models
described in [5], to assess the performance of the
proposed approach when integrated in CADRE’s
flight software stack. The avionics and sensors on
the development model rovers (Fig. 15) are largely
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Metric Mean (with std) - | Mean (with std) -
6mx6m 6mx8m

Exploration 18.28 4+ 3.83 22.88 + 4.13

Time (min)

Avg. Distance | 22.11 £ 4.97 31.70 £ 7.49

Travelled (m)

Max Distance | 25.15 + 2.77 35.05 £ 3.37

Travelled (m)

Table 2: Mercury-7 experiment results for
CADRE multi-robot exploration tests. Each point
is a mean of three trials.

similar to the flight model (Fig. 14), with some
missing hardware, such as the solar cells on the
panels and the radiator. The DM base station is
identical to the rovers in terms of its compute and
communication capabilities, but does not have the
capability to drive. The base station is responsible
for the communication of the data from the agents
to the lander and vice versa, functioning as the
gateway for uplink and downlink between ground
operators and the system. Surface mobility and
localization are provided by a bespoke navigation
stack developed for the mission. Individual rovers’
maps are stored, shared, and merged by a bespoke
distributed mapping database, MoonDB. We refer
the interested reader to [69] for a detailed discus-
sion of the database. Communication between the
processes used NASA’s F’ framework [70]. The
hardware experiments did not include the lander,



Scenario 1: Exploration of 6mx6m rectangular environment

1. Two-robot initialize exploration 2. Two-robot exploration

3. Two-robot exploration (Cont’d) 4. Finish exploration

Scenario 2: Exploration of 8mx6m rectangular environment

1. Two-robot initialize exploration 2. Two-robot exploration
3. Two-robot exploration (Cont’d) 4. Finish exploration
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Fig. 12: Two-robots exploring 6mx6m (scenario 1) and 8mx6m (scenario 2) using our proposed algorithm

but the rest of the system was setup as it would 6.2.1 DM test environment

be operated during the mission. The experiments with the development models

were executed in both an indoor test arena and
the Mars Yard at JPL (Fig. 16). The campaign
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Scenario 3: Resiliency experiment

1. Two-robot exploration initialization

3. One robot exploration

2. One robot fails-reinitialize exploration

4. Finish exploration

[ Explored Free Space M Obstacle —— Global Planner Trajectory Bl Unexplored Space

Paths Traversed []

K-means Partitions [l Current Obstacle Detected

Fig. 13: Testing resilience: two robots start out (sub fig. 1), but one fails. Exploration system adapts,

reassigning full exploration to the active robot.

consisted of 15 total experiments, with 2 tests in
the indoor area and the remainder in the Mars
Yard. Out of the 13 Mars Yard tests, 3 of the them
were executed after sunset in more lunar-like light-
ing conditions. The indoor test arena consists of a
6.5m by 8m flat surface with sparsely-spaced rocks
and small boulders. The test area in the Mars Yard
is up to 18.0m by 22.5m region with the ability
to configure the area similar to the lunar sur-
face (specifically, this testbed afforded testing with
craters). For the evening Mars Yard experiments,
a large flood light illuminated the operational area
to create shadows in effort to mimic the effect of
the sun on the lunar surface.

The experiments progressed in complexity,
both in terms of environmental difficulty and in
terms of integration with other flight software
functionality. For environmental difficulty, the ini-
tial tests were performed in the indoor test arena
to provide an environment that is less challeng-
ing than the lunar surface to specifically focus on
verifying the implementation of exploration algo-
rithm. Next, the first experiments in the Mars
Yard contained sparsely-spaced rocks of various
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sizes, and a few craters. Subsequent Mars Yard
experiments had an increased number and craters
to simulate more accurately the lunar surface,
with an environment that included hundreds of
rocks up to 0.05m diameter, rocks greater than
0.05m about every 1-2m, over 10 craters up to Im
diameter, and a large crater over 2m in diameter.

For what concerns flight software integra-
tion, throughout the experiments, additional
features were included, including autonomous
planning with ”wake-sleep” cycles, where the
rovers boot up simultaneously every 30 minutes
and autonomously plan their activities including
exploration, cooling down, and recharging. Use of
the taboo list, described in Section 4.2.3, was also
introduced in these tests to prevent the selection of
a frontier point that has been deemed unreachable
by the surface mobility planners multiple times
(e.g., a frontier point inside of a crater) so that
the rovers can continue to explore their entire
region without continuously attempting to reach
unreachable unknown spaces.



CADRE Flight Model rover

Fig. 14: CADRE flight model rovers in their
stowed and deployed configurations with key hard-
ware components highlighted

6.2.2 DM experiment results

The demonstrated that they
autonomously explore larger regions within
environments representative of the expected oper-
ational areas of the lunar surface, while executing
the CADRE flight software on hardware that is
almost identical to the flight model. Throughout
15 experiments, the rovers explored a total of
2,724 m? in about 25 hours. Table 3 shows the
exploration rate i.e., surface area covered per
second for the experiments. The experiments in
the table are grouped by the following categories:

rovers can

¢ Indoor: [environment| Indoor arena
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CADRE Development Model rover

Fig. 15: Close up view of CADRE DM rover

e MY: [environment] Mars Yard with sparsely-
spaced rocks and a few craters

e LunarMY: [environment] Mars Yard with
increased number of rocks, boulders, and craters
to more accurately simulate the lunar surface,
significant increase of difficulty compared to the
MY category

e W-S: [feature] Autonomous planning with
wake-sleep cycles

e Night: [environment] After sunset with night-
time illumination to simulate lunar-like lighting
conditions

e Taboo: [feature] Taboo
described in Section 4.2.3

search  feature

Note that we chose only to show the results of the
experiments that completed at least 20 minutes of
exploration, 13 of the 15 experiments.

As the level of complexity increased in the
experiments (i.e., more difficult environment,
autonomous planning, nighttime illumination),
the exploration rate initially decreases. There is
a notable decrease after the test environment
changes to the lunar-simulated environment in the
Mars Yard, as there are significantly more obsta-
cles to navigate. After introducing the taboo list,
the exploration rate goes on an upward trend,
demonstrating the positive impact of the feature.
By the last 5 experiments, the exploration rate was
an average of 0.035 m? per second. At this rate,
the rovers can explore a 20m by 20m region within
191 minutes, about seven 30-minute wake-sleep
cycles.

Table 4 provides a more-detailed overview of
selected experiments during the test campaign.
For these experiments, the coefficients for the cost



CADRE Development Model (DM) rover exploration test instances

Fig. 16: Figures show CADRE DM rovers exploring JPL’s indoor test arena to the left (Tests 1, 15) and
outdoor Lunar-analog Mars Yard (Tests 2-14) in the right.

function of the frontier-point computation defined
in equation (1) were set to w; = 1.0, we = 0.6, and
ws = 0.5. The metrics are defined as the following:

Ezxplored Area

. 2 )
e Explore efficiency (m?/m): e diien

* Explore rate (m?/s): Ztplored drea
¢ SMP (Surface Mobility Planner) effi-
: . Meters driven
ciency (s/m): =5 o
SMP failures
Duration

. SMP failures
per m: Meters driven

e SMP failures per s:
e SMP failures

Experiment 10 shows that the rovers are able to
explore for longer periods of time at a sufficient
exploration rate, with a duration of over 5.5 hours
and exploration area of 491 m?. Across the exper-
iments that utilized the taboo search feature, the
rovers were consistently able to explore over 1.3
m?/m with the highest rate in experiment 13
at 2.4 m?/m, demonstrating our exploration effi-
ciency in lunar-like environments. Furthermore,
test 13 also has the highest surface mobility plan-
ner failure rate of about 4 failures/meter and
degraded planner efficiency of 70 seconds per
meter, while test 12 has the worst exploration
efficiency of 1.3 m?/m, recording the lowest sur-
face mobility planner failure rates of 0.4656 fail-
ures/meter and one of the best planner efficiency
rates of 19 seconds per meter. This shows that the
exploration efficiency is not sensitive to the effi-
ciency of the planners, highlighting the robustness
of exploration to surface mobility planner perfor-
mance and failures. On the other hand, Table 4
indicates that increased rate of planner failures

21

per meter results in poor planner efficiency and
increased exploration rates, thus more power will
be utilized when exploring.

Exploration supports an optional toggle to log
specific data during execution. We implemented
tools to ingest the data and analyze the results.
Figure 17 highlights a set of products generated
by our post-execution tool which visualizes the
merged map with obstacles inflated, exploration
region, agent location, and frontier clusters for
each frontier point calculation. The graphic dis-
plays the progression of the explored area during
test 10a at three states over time for each agent,
wherein one rover explores the upper and the
other explores the bottom region. Since we will
not be able to physically observe the rovers during
lunar surface operations in real-time, these tools
will serve as a critical aid to evaluate exploration
performance on the CADRE mission.

Overall, these experiments show that the pro-
posed exploration architecture is able to effectively
perform exploration on representative hardware
in an environment representative of the Moon’s
Reiner Gamma — validating the design and
implementation of the exploration algorithm, and
clearing the way for deployment on the Lunar
surface.

6.3 Lessons learned

These experiments in multi-robot exploration
have yielded promising results while also high-
lighting several areas for improvement. The exper-
iments confirmed that the selected processor



CADRE DM rovers exploration progression

M unknown space not assigned to the agent [] Free Space

oo
oam

Candidate frontier regions

[l Unknown space assigned to the agent [ Unknown space (Obstacles) ™ Rover Location

W Selected frontier region

Fig. 17: A graphic displaying the progression of exploration in a lunar-simulated environment, which
includes a map with inflated obstacles, region, agent locations, and frontier clusters for three frontier
point calculations during Experiment 14 for two different agents, rover 1 (top) and rover 2 (bottom).
Both rovers start adjacent to each other in the bottom half of the workspace.

and sensor choices are able to support multi-
robot exploration operation. The experiments also
allowed us to finalize algorithm choices for map-
partition, agent exploration and our cost-function
parameters.

We are sharing a few of the lessons learned
from development and testing, as well as possible
further improvements to our solutions:
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Firstly, relying solely on visual odometry for
localization can be insufficient, resulting in occa-
sional increased localization errors, particularly
when robots make turns during exploration. The
on-board localization drift for a rover using visual-
inertial-solar odometry is as low as 1.61% and
as high as 3.67% (i.e., 3.67cm of drift per meter



Test No. | Exploration| Indoor |MarsYard | LunarMY W-S Night Taboo Rate
Area (m) (m?2/s)
1 7.5 x 6.50 v 0.0425
2,3 18.0 x 12.0 v 0.0302
4 18.0 x 18.0 v v 0.0276
5 18.0 x 18.0 v v 0.0144
8 15.0 x 22.5 v v 0.0135
9 15.0 x 22.5 v v 0.0243
10a 15.0 x 22.5 v v v 0.0232
10b 15.0 x 22.5 v v v v 0.0317
11,13,14 15.0 x 22.5 v v v 0.0306
12 15.0 x 22.5 v v v v 0.0667
15 6.5 x 8.0 v v v 0.0408

Table 3: Exploration rate (m?/s) for development model hardware experiments.

Test No. | Explored | Meters Duration | Explore Explore SMP SMP SMP SMP
area driven (s) effi- rate effi- failures failures failures
(m?) (m) ciency (m?/s) ciency per s per m
(m?/m) (s/m)
8 23.084 12.6746 1710 1.8213 0.0135 134.9155 145 0.0848 11.4402
9 341.572 164.451 14046 2.0770 0.0243 85.4115 538 0.0383 3.2715
10a 339.074 220.868 14628 1.5352 0.0232 66.2296 231 0.0158 1.0459
10b 152.054 73.597 4803 2.0660 0.0317 65.2608 87 0.0181 1.1821
11 96.367 48.15 1182 2.0014 0.0815 24.5483 0 0.0000 0.0000
12 156.69 120.195 2349 1.3036 0.0667 19.5432 56 0.0238 0.4659
13 199.844 82.723 5803 2.4158 0.0344 70.1502 329 0.0567 3.9772
14 224.909 109.774 10045 2.0488 0.0224 91.5059 427 0.0425 3.8898

Table 4: Results from selected DM experiments, each with a test area of 15.0m x 22.5m. A key per-
formance metric, the exploration efficiency (m?/m), is satisfied across varying conditions and surface

mobility planner (SMP) failure rates.

driven) in recent ground-truth instrumented local-
ization experiments. To improve positional accu-
racy, we have integrated visual-inertial-solar (i.e.,
using a sun sensor as a compass) measurements
and Ultra-wideband (UWB) ranging [59], enabling
more precise inter-robot localization through pose
graph optimization. This approach has been
demonstrated to reduce localization error by up
to 30% for two rovers and a base station. Further
improvements could be made to trade localization
performance for efficiency, such as coordinating
visual loop closures or inducing favorable sens-
ing geometries (e.g., for the UWB ranging) as has
been demonstrated in [71].

Secondly, the presence of craters that show
up as unclearable unknown space necessitated the
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addition of the taboo list. Since the system lacks a
crater detector, this approach is merely a heuris-
tic that needs to be carefully tuned to ensure that
craters are avoided, but exploration progress is
still made.

Thirdly, frontier search typically starts at the
robot position with the assumption that a rover
is within its exploration region. If a rover has to
leave this region, then by default it will try to
reach the closest frontier; however, this strategy
may not achieve the intended effect of leading a
rover back into its own region (and out of a neigh-
bor region, for example). Other solutions could
include requiring a rover to first reach the centroid
of its exploration region; however, this strategy
has not been tested yet.



Lastly, rovers may observe each other and
mark another rovers an obstacle in local maps
that are later shared. To avoid rovers showing up
as obstacles in the merged map, special care is
taken to clear rover footprints at known locations
of rovers. It was insufficient to clear footprints
locally due to the centralized map merging policy
that has no knowledge of rover footprints (i.e., it
operates on raw free, occupied, or unknown map
cells).We refrain from using an image-based detec-
tion algorithm for clearing footprint to reduce
computational complexity, and to prevent poten-
tial misidentifications caused by varying lighting
conditions and occlusions.

7 Conclusion

In conclusion, we introduced a semi-centralized,
map-partition-based multi-robot exploration algo-
rithm designed for multi-robot planetary missions.
Intended for deployment in the CADRE technol-
ogy demonstration mission, it can be adapted for
broader planetary exploration. The algorithm fea-
tures a leader agent (potentially elected) responsi-
ble for partitioning the unexplored area into non-
overlapping regions, which are then assigned to
individual agents. Following this allocation, each
agent performs independent exploration within
its designated region, requiring no ongoing coor-
dination with the leader agent or other agents.
This approach improves computational resource
distribution, reduces redundant coverage, mini-
mizes inter-agent communication, and decreases
inter-robot collisions.

We evaluated the algorithm through two sets
of hardware experiments and numerical simula-
tions. Simulations showed our approach outper-
forms both fully centralized and semi-centralized
algorithms with random frontier selection in terms
of exploration time, average distance traveled,
and maximum distance traveled. The first set
of hardware experiments, conducted in NASA
JPL’s Moon Yard with prototype rovers, demon-
strated resilience in navigating challenging envi-
ronments and handling failure scenarios where
regions were dynamically redistributed among
operational robots.

In the second set, we used development model
(DM) rovers closely resembling flight models to
evaluate the algorithm’s performance integrated
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into CADRE’s flight software stack. These high-
fidelity experiments, conducted in both an indoor
arena and the Mars Yard, validated the algo-
rithm’s performance under mission-representative
conditions, including lunar-like lighting chal-
lenges. Additionally, we introduced a ”taboo list”
feature in the frontier selection algorithm to
exclude repeatedly unreachable frontier points,
ensuring efficient exploration and recovery from
temporary issues.

Future work will focus on optimizing region
allocation and enhancing exploration efficiency.
We plan to develop dynamic partitioning strate-
gies that adapt to environmental changes and
improve workload balance. Exploration effi-
ciency will be further improved by integrating
advanced cost functions for frontier selection,
optimizing robot trajectories, and implementing
communication-aware inter-agent coordination for
collaborative decision-making. These enhance-
ments will further strengthen the algorithm’s
robustness, enabling more efficient and reliable
multi-robot exploration in planetary missions.
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partition for scenarios 1 and 2. K-means generates
more uniform-sized partitions for the same robots’
initial locations compared to the Voronoi method.
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Comparison between Voronoi and K-means parti-
tions:
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Voronoi-based partition

This method [47] generates a partition based on
the set of closest points in the map to each robot.
The robot locations are the generator points
for the Voronoi regions. This method produces
even-sized partitions when the robots are sym-
metrically placed with respect to the unexplored
cells. However, it produces uneven-sized regions
if the robots’ initial locations are asymmetrically
located across the unexplored space (Fig. 18).

K-means based partition

This method [48] generates a partition by
iteratively reducing the user-defined “distance”
between the data points and the centroids of the
intermediate calculated partitions. The stopping
criterion for K-means varies, but the commonly
used ones are a user-defined maximum number
of iterations, or when the centroids stop moving
beyond a given threshold distance. The perfor-
mance of K-means partitioning is sensitive to the
centroid initialization, and numerous works have
explored techniques for its proper initialization
[72-74]. The K-means method produces a more
uniform partition of regions for the same input
points as compared to the Voronoi method for the
scenarios shown in (Fig. 18).
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