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Abstract—This paper studies the interaction between a fleet of
electric, self-driving vehicles servicing on-demand transportation
requests (referred to as Autonomous Mobility-on-Demand, or
AMoD, system) and the electric power network. We propose
a joint linear model that captures the coupling between the
two systems stemming from the vehicles’ charging requirements.
The model subsumes existing network flow models for AMoD
systems and DC models for the power network, and it captures
time-varying customer demand and power generation costs, road
congestion, and power transmission and distribution constraints.
We then leverage the model to jointly optimize the operation of
both systems. We devise an algorithmic procedure to losslessly
reduce the problem size by bundling customer requests, allowing
it to be efficiently solved by off-the-shelf linear programming
solvers. We then study the implementation of a hypothetical
electric-powered AMoD system in Dallas-Fort Worth, and its
impact on the Texas power network. We show that coordination
between the AMoD system and the power network can reduce
the overall energy expenditure compared to the case where no
cars are present (despite the increased demand for electricity)
and yield savings of $182M/year compared to an uncoordinated
scenario. Finally, we provide a closed-loop receding-horizon
implementation. Collectively, the results of this paper provide
a first-of-a-kind characterization of the interaction between
electric-powered AMoD systems and the power network, and
shed additional light on the economic and societal value of AMoD.

I. INTRODUCTION

Private vehicles are major contributors to urban pollution,
which is estimated to cause over seven million premature
deaths worldwide every year [29]. Plug-in electric vehicles
(EVs) hold promise to significantly reduce urban pollution,
both by reducing carbon dioxide emissions from internal-
combustion engine vehicles, and by enabling use of renewable
and low-polluting power generators as a source of energy
for transportation services. However, at present, adoption of
EVs for private mobility has been significantly hampered by
customers’ concerns about limited range and availability of
charging infrastructure.

The emerging technology of self-driving vehicles might
provide a solution to these challenges and thus might represent
a key enabler for the widespread adoption of EVs. Specifically,
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fleets of self-driving vehicles providing on-demand trans-
portation services (referred to as Autonomous Mobility-on-
Demand, or AMoD, systems) hold promise to replace personal
transportation in large cities by offering high quality of service
at lower cost [22] with positive effects on safety, parking
infrastructure, and congestion. Crucially, EVs are especially
well-suited to AMoD systems. On the one hand, short-range
trips typical of urban mobility are well-suited to the current
generation of range-limited EVs; on the other hand, intelligent
fleet-wide policies for rebalancing and charging can ensure
that vehicles with an adequate level of charge are available
to customers, virtually eliminating “range anxiety,” a major
barrier to EV adoption. To fully realize this vision, however,
one needs currently unavailable tools to manage the complex
couplings between AMoD fleet management (e.g., for routing
and charging the EVs) and the control of the power network.
Specifically, one should consider

1) Impact of transportation network on power network:
Concurrent charging of large numbers of EVs can have
significant effects both on the stability of the power
network and on the local price of electricity (including
at the charging stations) [21, 3, 9]. For example, [9]
shows that in California a 25% market penetration of
(non-autonomous) EVs with fast chargers, in the absence
of smart charging algorithms, would increase overall
electricity demand in peak load by about 30%, and
electricity prices by almost 200%.

2) Impact of power network on transportation network:
Electricity prices can significantly affect travel patterns
for EVs. [3] shows that changes in electricity prices can
radically alter the travel patterns and charging schedules
of fleets of EVs in a simplified model of the San Fran-
cisco Bay Area. This, in turn, would affect electricity
prices in a complex feedback loop.

The key idea behind this paper is that, by intelligently
routing fleets of autonomous EVs and, in particular, by har-
nessing the flexibility offered by the routes and schedules for
the empty-traveling vehicles, one can actively control such
complex couplings and guarantee high-performance for the
overall system (e.g., high passenger throughput and lower
electricity costs). Additionally, autonomous EVs provide a
unique opportunity for joint traffic and energy production
management, as they could act as mobile storage devices.
That is, when not used for the fulfillment of trip requests, the
vehicles could be routed to target charging stations in order
to either absorb excess generated energy at time of low power
demand (by charging) or inject power in the power network



at times of high demand (by discharging).
Literature review: The integration of non-autonomous EVs

within the power network has been addressed in three main
lines of work. A first line of work addresses the problem
of scheduling charging of EVs (i.e., optimizing the charg-
ing profile in time) under the assumption that the vehicles’
charging schedule has no appreciable effect on the power
network [20, 24, 25]. This assumption is also commonly
made when selecting the locations of charging stations (i.e.,
optimizing the charging profile in space) [8, 18]. A high
penetration of EVs would, however, significantly affect the
power network. Thus, a second line of work investigates
the effects of widespread adoption of EVs on key aspects
such as wholesale prices and reserve margins, for example
in macroeconomic [9] and game-theoretical [21, 27] settings.
Accordingly, [2, 3] investigate joint models for EV routing
and power generation/distribution aimed at driving the system
toward a socially-optimal solution. Finally, a third line of work
investigates the potential of using EVs to regulate the power
network and satisfy short-term spikes in power demand. The
macroeconomic impact of such schemes (generally referred
to as Vehicle-To-Grid, or V2G) has been studied in [12],
where it is shown that widespread adoption of EVs and V2G
technologies could foster significantly increased adoption of
wind power. Going one step further, [13] proposes a unified
model for EV fleets and the power network, and derives a joint
dispatching and routing strategy that maximizes social welfare
(i.e., it minimizes the overall cost borne by all participants,
as opposed to maximizing individual payoffs). However, [12]
does not capture the spatial component of the power and
transportation networks, while [13] assumes that the vehicles’
schedules are fixed.

The objective of this paper is to investigate the interaction
between AMoD and electric power systems (jointly referred to
as Power-in-the-loop AMoD, or P-AMoD, systems) in terms
of modeling and algorithmic tools to effectively manage their
couplings. In this context, our work improves upon the state of
the art (in particular, [2, 3]) along three main dimensions: (i)
it considers a fleet of shared and autonomous EVs, which
offer significant additional degrees of freedom for vehicle
scheduling, routing, and charging; (ii) it provides efficient
algorithms that can solve large-scale problems; and (iii) it
characterizes the vehicles’ ability to return power to the power
network through V2G schemes, and its economic benefits.

Statement of contributions: Specifically, the contribution of
this paper is fourfold. First, we propose a joint linear model for
P-AMoD systems. The model captures time-varying customer
demand and generation prices, congestion in the road network,
power transmission constraints on the transmission lines, and
transformer capacity constraints induced by the distribution
network. Second, we leverage the model to design tools that
optimize the operations of P-AMoD systems and, in particular,
maximize social welfare. To this end, we propose an algo-
rithmic procedure to losslessly reduce the dimensionality of
the P-AMoD model. The procedure allows P-AMoD problems
with hundreds of road links, time horizons of multiple hours,
and any number of customers and vehicles to be solved
on commodity hardware. Third, we apply the model and
algorithms to a case study of a hypothetical deployment of
an AMoD system in Dallas-Fort Worth, TX. We show that

coordination between the AMoD system and the electric power
network can have a significant positive impact on the price
of electricity (remarkably, the overall electricity expenditure
in presence of the AMoD system can be lower than in the
case where no vehicles are present, despite the increased
demand), while retaining all the convenience and sustainability
benefits of AMoD. This suggests that the societal value of
AMoD systems spans beyond mobility: properly coordinated,
AMoD systems can deliver significant benefits to the wider
community by helping increase the efficiency of the power
network. Finally, we present a receding-horizon algorithm
for P-AMoD that provides built-in closed-loop robustness
and delivers computation times in the order of seconds on
commodity hardware at the price of some suboptimality.

Organization: The remainder of this paper is organized as
follows. In Section II we present a linear model that captures
the interaction between an AMoD system and the power
network. In Section III, we propose a procedure to losslessly
reduce the size of the model by bundling customer requests.
In Section IV, we evaluate our model and algorithm on a
case study of Dallas-Fort Worth. In Section V, we propose
a receding-horizon implementation. Finally, in Section VI, we
draw conclusions and discuss directions for future work.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

We propose a linear, flow-based model that captures the
interaction between an AMoD system and the power network.
The model consists of two parts.

First, we extend the model in [30] to a time-varying network
flow model of an AMoD system with EVs. We assume that
a Transportation Service Operator (TSO) manages the AMoD
system in order to fulfill passenger trip requests within a given
road network. Road links are subject to congestion, and trip
requests arrive according to an exogenous dynamical process.
The TSO must not only compute the routes for the autonomous
EVs (i.e. vehicle routing), but also issue tasks and routes for
empty vehicles in order to realign the fleet with the asymmetric
distribution of trip demand (i.e. vehicle rebalancing). Due to
limited battery capacity, the EVs need to periodically charge
at charging stations. The price of electricity varies between
charging stations – the charging schedule is determined by
the TSO in order to minimize the fleet’s operational cost.

The price of electricity itself is a result of the power system
operation to balance supply and demand, and varies across
the power grid. Thus, we next review the linear (DC) power
flow model of the power network and the economic dispatch
problem. The power transmission network comprises energy
providers that are connected to load buses through high-
voltage transmission lines. Transmission capacities (dictated
chiefly by thermal considerations) limit the amount of power
that can be transferred on each transmission line. Load buses
are connected to charging stations and other sources of power
demand through the distribution systems: this system induces
constraints on the amount of power that can be served to
each load bus. Power demands other than those from charging
stations are regarded as exogenous parameters in this paper.
The power network is controlled by an Independent System
Operator (ISO). The ISO also determines prices at the load
buses (and, consequently, at the charging stations) so as to



guarantee grid reliability while minimizing the overall gener-
ation cost (a problem known as economic dispatch).

The vehicles’ charging introduces a coupling between the
transportation and the power networks. The loads due to
charging influence the local price of electricity set by the
ISO – the prices, in turn, affect the optimal charging schedule
computed by the TSO. Accordingly, we conclude this section
by describing the interaction between the two models, and we
propose a joint model for Power-in-the-loop AMoD.

A. Network Flow Model of an AMoD system
We consider a time-varying, finite-horizon model. The time

horizon of the problem is discretized in T time intervals,
each corresponding to TS seconds; the battery charge level of
the autonomous vehicles is similarly discretized in C charge
levels, each corresponding to JC joules.

Road network: The road network is modeled as a directed
graph R = (VR, ER), where VR denotes the node set and
ER ⊆ VR × VR denotes the edge set. Nodes v ∈ VR
denote either an intersection, a charging station, or a trip
origin/destination. Edges (v, w) ∈ ER denote the availability
of a road link connecting nodes v and w. For each edge, the
length d(v,w) ∈ R≥0 determines the mileage driven along the
road link; the traversal time t(v,w) ∈ {1, . . . , T} characterizes
the travel time on the road link in absence of congestion; the
energy requirement c(v,w) ∈ {−C, . . . , C} models the energy
consumption (i.e., the number of charge levels) required to
traverse the link in absence of congestion; and the capacity
fv,w ∈ R≥0 captures the maximum vehicle flow rate (i.e., the
number of vehicles per unit of time) that the road link can
accommodate without experiencing congestion.

Vehicles traversing the road network can recharge and
discharge their batteries at charging stations, whose locations
are modeled as a set of nodes S ⊂ VR. The charging and
discharging rates δc+s , δc

−
s ∈ {1, . . . , C} correspond to the

amount of energy (in charge levels) that the charger can
provide to a vehicle (or, conversely, that a vehicle can return
to the power grid) in one unit of time. For simplicity, we
assume that the charging rates are fixed; however, the model
can be extended to accommodate variable charging rates. The
charging and discharging prices p+s (t), p−s (t) ∈ R capture
the unit cost of energy (or, conversely, the unit payment the
vehicles receive for returning power to the grid) at time t; in
this paper, p+s (t) = p−s (t). The capacity Ss ∈ N models the
maximum number of vehicles that can simultaneously charge
or discharge at station s.

Expanded AMoD network: We introduce an expanded
AMoD network modeled as a directed graph G = (V, E)
to represent the time-varying nature of the problem and the
state-of-charge of the vehicles. Specifically, each node v ∈ V
models a physical location at a given time and charge level,
while edges e ∈ E model road links and charging actions
at a given time and charge level. Formally, a node v ∈ V
corresponds to a tuple v = (vv, tv, cv), where vv ∈ VR is
a node in the road network graph R; tv ∈ {1, . . . , T} is a
discrete time; and cv ∈ {1, . . . , C} is a discrete charge level.
The edge set E is partitioned into two disjoint subsets, namely
EL and ES . Edges e ∈ EL represent road links, whereas edges
e ∈ ES model the charging/discharging process at the stations.
An edge (v,w) belongs to EL when (i) an edge (vv, vw)

exists in the road network graph edge set ER, (ii) the link
(vv, vw) ∈ ER can be traversed in time tw − tv = t(vv,vw),
and (iii) the battery charge required to traverse the link is
cv − cw = c(vv,vw). Conversely, an edge (v,w) represents a
charging/discharging edge in ES when (i) vv = vw is the loca-
tion of a charging station in S and (ii) the charging/discharging
rate at the charging location vv is (cw−cv)/(tw− tv) = δc+vv
(charging) or (cw−cv)/(tw−tv) = δc−vv (discharging). Figure
1 (left) shows a graphical depiction of the graph G.
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Fig. 1. Augmented transportation and power networks. As vehicles travel
on road links (modeled by solid black arrows), their charge level decreases.
Blue nodes represent charging stations: the flows on charging and discharging
edges affect the load at the corresponding nodes in the power network. For
simplicity, only one time step is shown.

Customer and rebalancing routes: Transportation requests
are represented by the set of tuples {(vm, wm, tm, λm)}Mm=1,
where vm ∈ VR is the request’s origin location, wm ∈ VR is
the request’s destination location, tm is the requested pickup
time, and λm is the average customer arrival rate (or simply
customer rate) of request m at time interval tm. Transportation
requests are assumed to be known and deterministic.

The goal of the TSO is to compute a routing and recharging
policy for the self-driving vehicles. To achieve this, we model
vehicle routes as network flows [1]. Network flows are an
equivalent representation for routes. Indeed, any route can
be represented as a network flow assuming value 1 on edges
belonging to the route and 0 elsewhere; conversely, all network
flows considered in this paper can be represented as a collec-
tion of weighed routes [1, Ch. 3]. This representation allows
us to leverage the rich theory of network flows: in particular, in
Section III section we exploit this theory to losslessly reduce
the dimensionality of the optimization problem.

We denote the customer flow as the rate of customer-
carrying vehicles belonging to a specific transportation request
(vm, wm, tm, λm) traversing an edge e ∈ E . Formally, for
request m ∈ {1, . . . ,M}, the customer flow is a function
fm(v,w) : E 7→ R≥0, that represents the rate of customers
belonging to request m traveling from location vv to location
vw (or charging/discharging at location vv = vw) from time tv
to time tw, with an initial battery charge of cv and a final bat-
tery charge of cw. Analogously, the rebalancing (or customer-
empty) flow f0(v,w) : E 7→ R≥0 represents the rate of
empty vehicles traversing a road link or charging/discharging.
Customer flows must satisfy a continuity condition: customer-
carrying vehicles entering a node at a given time and charge
level must exit the same node at the same time and with the
same charge level. Equation (1) enforces this condition:∑

u:(u,v)∈E

fm(u,v) + 1vv=vm1tv=tmλ
cv,in
m =

∑
w:(v,w)∈E

fm(v,w)+

1vv=wmλ
tv,cv,out
m ∀v ∈ V,m ∈ {1, . . . ,M} , (1a)

C∑
c=1

λc,inm = λm,

T∑
t=1

C∑
c=1

λt,c,out
m = λm, ∀m∈{1, . . . ,M}, (1b)



where the variable λc,inm denotes the customer rate departing
with charge level c and the variable λt,c,out

m denotes the cus-
tomer rate reaching the destination at time t with charge level
c; both are optimization variables. Function 1x denotes the
indicator function of the Boolean variable x = {true, false},
that is 1x = 1 if x is true, and 1x = 0 if x is false.

Rebalancing flows must satisfy a continuity condition analo-
gous to the one for the customer flows. In addition, rebalancing
flows must satisfy a consistency condition representing the
fact that a customer may only depart the origin location if
an empty vehicle is available. Finally, the initial position and
charge level of the vehicles is fixed; the final position and
charge level is an optimization variable (possibly subject to
constraints, e.g., on the minimum final charge level). The
constraints for the initial and final positions of the rebalancing
vehicles at each node v ∈ V are captured by a set of
functions NI(v) and NF (v), respectively. Formally, NI(v),
with tv = 1, denotes the number of rebalancing vehicles
entering the AMoD system at location vv with charge level
cv. Conversely, NF (v), with tv = T denotes the number
of rebalancing vehicles at location vv with charge level cv.
For tv 6= 1, NI(v) = 0; for tv 6= T , NF (v) = 0. The
overall number of vehicles in the network is

∑
v∈V NI(v).

Equation (2) simultaneously enforces the rebalancing vehicles’
continuity condition, consistency condition, and the constraints
on the initial and final locations:∑
u:(u,v)∈E

f0(u,v) +

M∑
m=1

1vv=wmλ
tv,cv,out
m +NI(v) =

∑
w:(v,w)∈E

f0(v,w) +

M∑
m=1

1vv=vm1tv=tmλ
cv,in
m +NF (v), ∀v ∈ V. (2)

Congestion: We adopt a simple threshold model for con-
gestion: the vehicle flow on each road link is constrained to be
smaller than the road link’s capacity. The model is analogous
to the one adopted in [30] and is consistent with classical
traffic flow theory [28]. This simplified congestion model is
adequate for our goal of controlling the vehicles’ routes and
charging schedules, and ensures tractability of the resulting
optimization problem; higher-fidelity models can be used for
the analysis of the AMoD system’s operations. Equation (3)
enforces the road congestion constraint:

C∑
cv=1

M∑
m=0

fm(v,w) ≤ f (vv,vw), ∀(vv, vw) ∈ ER, tv ∈ {1, . . . , T}

(3)

Charging stations can simultaneously accommodate a lim-
ited number of vehicles. The station capacity constraint is
enforced with Equation (4):∑

(v,w)∈ES :
vv=vw=v

M∑
m=0

fm(v,w) ≤ Svv , ∀v ∈ S, t ∈ {1, . . . , T}. (4)

Network flow model of an AMoD system: The travel time
TM experienced by customers, a proxy for customer welfare,
and the overall mileage DV driven by (both customer-carrying
and empty) vehicles, a proxy for vehicle wear, are given by

TM =
∑

(v,w)∈E

tv,w

M∑
m=1

fm(v,w),

DV =
∑

(v,w)∈E

dvv,vw

M∑
m=0

fm(v,w),

Note that TM only includes the travel time of customer-
carrying vehicles, whereas DV includes the distance traveled
by all vehicles. Also note that, for charging edges, dvv,vw = 0.
The overall cost of electricity incurred by the vehicles (includ-
ing credits from selling electricity to the power network) is

VE =
∑

(v,w)∈ES

M∑
m=0

fm(v,w)δcvvp(v,w),

where δcvv = δc+vv and p(v,w) = p+vv if cw > cv, δcvv = δc−vv
and p(v,w) = p−vv

otherwise.
The goal of the TSO is to solve the Vehicle Routing and

Charging problem, that is, to minimize the aggregate societal
cost borne by the AMoD users while satisfying all operational
constraints. We define the customers’ value of time (i.e., the
monetary loss associated with traveling for one unit of time)
as VT and the operation cost per kilometer of the vehicles
(including maintenance but excluding electricity costs) as VD.
The aggregate societal cost experienced by the AMoD users
is then defined as

VDDV + VE + VTTM . (5)
The Vehicle Routing and Charging problem entails minimiz-

ing (5) subject to constraints (1), (2), (3), and (4).

B. Linear model of power network

In this paper, the power network is modeled according to
the well-known DC model [14, Ch. 6], which, by assuming
constant voltage magnitudes and determining the power flow
on transmission lines solely based on voltage phase angles,
represents an approximation to the higher-fidelity AC flow
model [7]. In analogy with the treatment of the AMoD model,
we discretize the time horizon of the problem in T time
steps. The power grid is modeled as an undirected graph
P = (B, EP ), where B is the node set, commonly referred to
as buses in the power engineering literature, and EP ⊆ B×B is
the edge set, representing the transmission lines. The subsets of
buses representing generators and loads are defined as G ⊂ B
and L ⊂ B, respectively. Nodes that are neither loads nor
generators are referred to as interconnects. Generators produce
power and deliver it to the network, while loads absorb power
from the network. Each generator g ∈ G is characterized by a
maximum output power pg(t), a minimum output power p

g
(t),

a unit generation cost og(t), and maximum ramp-up and ramp-
down rates p+g (t) and p−g (t), respectively. Transmission lines
e ∈ EP are characterized by a reactance xe and a maximum
allowable power flow pe (due chiefly to thermal constraints).
The reactance and the maximum allowable power flow do not
vary with time. Each load node l ∈ L is characterized by a
required power demand dl(t). The distribution network is not
modeled explicitly; however, thermal constraints due to the
distribution substation transformers are modeled by an upper
bound dl(t) on the power that can be delivered at each load
node.

We define a generator power function p : (G, {1, . . . , T}) 7→
R≥0, and a phase angle function θ : (B, {1, . . . , T}) 7→ R. The
Economic Dispatch problem entails minimizing the generation
cost subject to a set of feasibility constraints [14], namely:



minimize
p,θ

T∑
t=1

∑
g∈G

og(t)p(g, t) , (6a)

subject to
∑

(u,v)∈EP

θ(u, t)− θ(v, t)
xu,v

+ 1v∈Gp(v, t) = 1v∈Ldv(t)+

∑
(v,w)∈EP

θ(v, t)− θ(w, t)
xv,w

, ∀v ∈ B, t ∈ {1, . . . , T} , (6b)

− pb1,b2 ≤
θ(b1, t)− θ(b2, t)

xb1,b2
≤ pb1,b2 ,

∀(b1, b2) ∈ EP , t∈{1, . . . , T}, (6c)
p
g
(t) ≤ p(g, t) ≤ pg(t), ∀g ∈ G, t∈{1, . . . , T} , (6d)

− p−g (t) ≤ p(g, t+ 1)− p(g, t) ≤ p+g (t) ,
∀g ∈ G, t ∈ {1, . . . , T − 1} , (6e)

dl(t) ≤ dl(t) , ∀l ∈ L, t ∈ {1, . . . , T} . (6f)

Equation (6b) enforces power balance at each bus based
on the DC power flow equations; Equation (6c) encodes the
transmission lines’ thermal constraints; Equation (6d) captures
the generation capacity constraints; Equation (6e) encodes
the ramp-up and ramp-down constraints; and Equation (6f)
encodes the thermal constraints of substation transformers at
load nodes.

The unit price of electricity at the load nodes is typically
determined through a mechanism known as Location Marginal
Pricing (LMP) [14]. The LMP at a node is defined as the
marginal cost of delivering one unit of power at the node while
respecting all the system constraints. It can be shown [14] that
the LMP at each bus equals the dual variable corresponding
to the power injection constraint (6b) at the same bus in the
Economic Dispatch problem.

C. Power-in-the-loop AMoD system

The vehicles’ charging requirements introduce a coupling
between the AMoD system and the power network, as shown
in Figure 1. Specifically, the vehicles’ charging schedule
produces a load on the power network. Such a load on the
power network affects the solution to the ISO’s Economic
Dispatch problem and, as a result, the LMPs. The change in
LMPs, in turn, has an effect on the TSO’s optimal charging
schedule. In absence of coordination, this feedback loop can
lead to system instability, as shown for the case of privately-
owned, non-autonomous EVs in [3].

In this section, we formulate a joint model for the TSO’s Ve-
hicle Routing and Charging problem and the ISO’s Economic
Dispatch problem. The goal of this model is to maximize
the social welfare by minimizing the total cost of mobility (a
profit-maximizing formulation would be similar) and the total
cost of power generation and transmission. While the resulting
solution is not directly actionable (since it requires the TSO
and the ISO to coordinate and share their private information),
coordination mechanisms can be designed to steer the system
towards the optimum: specifically, in the extended version of
this paper [19] we show that the solution can be enforced as
a general equilibrium through appropriate pricing.

The coupling between the AMoD model and the electric
power model is mediated by the charging stations. A given
charging station is represented both by a node v ∈ VR

in the road network and by a load node l ∈ L in the
power network. To capture this correspondence, we define
an auxiliary function MP,R : L 7→ {VR ∪ ∅}. Given a load
node b ∈ L, MP,R(b) denotes the node in VR (if any) that
represents a charging station connected to b. We then define
two additional functions, M+

P,G : (L, {1, . . . , T}) 7→ {E ∪ ∅}
and M−P,G : (L, {1, . . . , T}) 7→ {E ∪ ∅}. The function M+

P,G
(resp. M−P,G) maps a load node l and a time t to the set of
charge (resp. discharge) edges in G corresponding to station
MP,R(l) at time t. Formally,

M+
P,G(l, t) :{(v,w) ∈ ES |vv ∈MP,R(l), cv < cw, tv ≤ t < tw},

M−P,G(l, t) :{(v,w) ∈ ES |vv ∈MP,R(l), cv > cw, tv ≤ t < tw}.
The load at a load bus l can be expressed as the sum of two

components: an exogenous demand dl,e and the load due to
the charger or chargers connected to that bus, quantitatively,

dl(t) =dl,e(t) + JCδc
+
MP,R(l)

∑
(v,w)∈M+

P,G
(l,t)

M∑
m=0

fm(v,w)

+ JCδc
−
MP,R(l)

∑
(v,w)∈M−

P,G
(l,t)

M∑
m=0

fm(v,w),

∀l ∈ L, t ∈ {1, . . . , T}. (7)
We are now in a position to state the Power-in-the-loop AMoD
(P-AMoD) problem:

minimize
fm,λ

c,in
m ,λ

c,t,out
m ,NF ,θ,p

VTTM+VDDv+

T∑
t=1

∑
g∈G

og(t)p(g, t), (8)

subject to (1), (2), (3), (4), (6), and (7) .

D. Discussion

Some comments are in order. First, the model assumes that
the TSO and the ISO share the goal of maximizing social
welfare and are willing to collaborate on a joint policy. This
assumption is, in general, not realistic: not only do the TSO
and ISO have different goals, but they are also generally
reluctant to share the information required for successful
coordination. However, once a socially optimal strategy is
found, efficient coordination mechanisms can be designed that
steer rational agents towards that strategy. In the extended
version of this paper [19] we show that the social optimum
can be enforced as a general equilibrium through appropriate
pricing, and that the market-clearing prices can be computed
with a privacy-preserving mechanism that does not require the
agents to disclose their private information.

Second, we consider single-occupancy vehicles, in line with
the mode of operations of current MoD systems; the extension
to ride-sharing is an interesting avenue for future research.

Third, the network flow model has some well-known lim-
itations: chiefly, it does not capture the stochasticity of the
customer arrival process, and it does not directly yield integral
routes suitable for real-time control of vehicles. Furthermore,
in this paper, customer requests are assumed to be determinis-
tic and known in advance, an assumption that is not consistent
with the paradigm of on-demand mobility. To overcome these
limitation, in Section V we propose a receding-horizon im-
plementation of Problem 8. Moreover, future requests may be
interpreted as the expected number of future transportation
requests (which may be learned from historical data and



demand models): accordingly, the model proposed in this
section may be used for planning on timescales of days and
hours, akin to the Day-Ahead-Market already in use in the
electric power network [14].

Finally, the DC model for the power network has some
shortcomings, chiefly the inability to handle voltage con-
straints [10] and system-dependent accuracy [23]. On the
other hand, its linearity makes it amenable to large-scale
optimization and easy to integrate within the economic theory
upon which the transmission-oriented market design is based
on [23]. Moreover, the DC model is widely adopted among
ISOs [16], and its LMP calculations are fairly accurate [17].
Hence, the DC model is appropriate for high-level synthesis
of joint control policies such as those considered in this paper.

III. SOLUTION ALGORITHMS

The number of variables of the P-AMoD problem (8) is
(M +1)|E|+MC(T +1)+ |VR|C+T (|G|+ |B|). The size of
the edge set E is |E| = Θ((|ER|+ |S|)CT ), and the number of
customer demands admits an upper bound M = O(|VR|2T ),
since each customer demand is associated with an origin, a
destination, and a departure time. The size of the problem is
dominated by the customer flow variables in the road network
– the number of such variables is M |E| = O((|VR|2T )(|ER|+
|S|)CT ). Consider a typical problem with 25 road nodes, 200
road links, 30 charge levels, and a horizon of 20 time steps.
Such problem results in a number of variables on the order
of 2 · 109, which can not be solved even by state-of-the-art
solvers on modern hardware [15].

In this section, we propose a bundling procedure that
collects multiple customer demands in a single customer flow
without loss of information. The procedure allows one to
reduce the number of network flows to O(|VR|): as a result,
the size of the prototypical problem above is reduced to 4 ·106

variables, well within reach of modern solvers. The procedure
relies on the notion of bundled customer flow,

Definition III.1 (Bundled customer flow).
Consider the set of customer requests
{vm, wm, tm, λm}Mm=1. Denote the set of customer
destinations as D := {∪Mm=1wm}. For a given destination
dB ∈ D, we define a bundled customer flow as a function
fB,dB

(u,v) : E 7→ R≥0 that satisfies∑
u:(u,v)∈E

fB,dB (u,v) +
∑

m∈{1,...,M}:
wm=dB

1vv=vm1tv=tmλ
cv,in
m

=
∑

w:(v,w)∈E

fB,dB (v,w) + 1vv=dB

∑
m∈{1,...,M}:
wm=dB

λtv,cv,out
m , ∀v ∈ V, (9a)

C∑
c=1

λc,inm = λm, ∀m ∈ {1, . . . ,M} : wm = dB , (9b)

∑
m∈{1,...,M}:
wm=dB

T∑
t=1

C∑
c=1

λt,c,out
m =

∑
m∈{1,...,M}:
wm=dB

λm (9c)

Intuitively, the bundled customer flow for a given destination
dB can be thought of as the sum of customer flows (i.e.,
network flows satisfying Eq. (1)) for all customer requests
whose destination is node dB . A bundled customer flow is an
equivalent representation for a set of customer flows belonging

to customer requests sharing the same destination. The next
lemma formalizes this intuition.

Lemma III.2 (Equivalency between customer flows and
bundled customer flows). Consider a network G(V, E) and
a set of customer requests {vm, wm, tm, λm}Mm=1. Assume
there exists a bundled customer flow {fB,dB

(u,v)}(u,v)∈E
that satisfies Equation (9) for a destination dB ∈ D. Then,
for each customer request {vm, dB , tm, λm} with destination
dB , there exists a customer flow fm(u,v) that satisfies Eq.
(1). Furthermore, for each edge (u,v) ∈ E , fB,dB

(u,v) =∑
m∈{1,...,M}:wm=dB

fm(u,v).

Proof sketch: The proof is constructive. Define as path flow
a network flow that has a fixed intensity on edges belonging
to a path without cycles from the origin to the destination
and zero otherwise. The flow decomposition algorithm [1, Ch.
3.5] is used to decompose the bundled customer flow into a
collection of path flows, each with a single origin node v ∈ V
and destination node w ∈ V with vw = dB . The customer flow
for customer request (vm, dB , t, λ) is then obtained as the sum
of path flows leaving origin nodes {v = (vm, tm, c)}Cc=1 with
total intensity λm.

We can leverage the result in Lemma III.2 to solve the
P-AMoD problem in terms of bundled customer flows, thus
dramatically decreasing the problem size. The next theorem
formalizes this intuition.

Theorem III.3 (P-AMoD with bundled customer flows).
Consider the following problem, referred to as the bundled
P-AMoD problem:

minimize
f0,fB,dB

,λc,in
m ,

λc,t,out
m ,NF ,θ,p

M∑
m=1

VTTM + VDDv +

T∑
t=1

∑
g∈G

og(t)p(g, t) , (10)

subject to (9) ∀dB ∈ D ,
(2), (3), (4), (6), and (7) ,

where each instance of
∑M

m=1 fm in the cost function
and in Equations (2), (3), (4), (6), and (7) is replaced by∑

dB∈D fB,dB
. The bundled P-AMoD problem (10) admits a

feasible solution if and only if the P-AMoD problem (8) admits
a solution. Furthermore, the optimal values of Problem (8) and
Problem (10) are equal.

Proof sketch: The proof follows directly from Lemma III.2
and the linearity of the cost function. We refer the reader to
the extended version [19] for a rigorous proof.

The optimization problem in (10) can be solved with a
number of variables that is O((|VR|+ 1)|E|+MC+ |VR|C+
T (|G| + |Ep| + |B|)). To see this, note that in Equation (9)
the variables {λt,c,out

m }{m,t,c} only appear as part of the sum∑
m∈{1,...,M}:wm=dB

λt,c,out
m and therefore may be replaced by

the smaller set of variables {λt,c,out
dB

}{dB ,t,c}, where λt,c,out
dB

:=∑
m∈{1,...,M}:wm=dB

λt,c,out
m , without loss of generality. Com-

pared to Problem (8), the number of customer flow variables.
which dominate the problem size, grows linearly (as opposed
to quadratically) with the number of nodes |VR| and does not
depend on the time horizon T .

IV. NUMERICAL EXPERIMENTS

We study a hypothetical deployment of an AMoD system to
satisfy medium-distance commuting needs in the Dallas-Fort



Worth metroplex, with the primary objective of investigating
the interaction between such system and the Texas power net-
work. Specifically, we study a ten-hour interval corresponding
to one commuting cycle, from 5 a.m. to 3 p.m., with 30-minute
resolution. Data on commuting patterns is collected from the
2006-2010 Census Tract Flows, based on the American Com-
munities Survey. Census tracts in the metroplex are aggregated
in 25 clusters, as shown in Figure 2. We only consider trips
starting and ending in different clusters: the total number of
customer requests is 400,532. The commuters’ value of time
is set equal to $24.40/hr, in accordance with DOT guidelines
[26]. The road network, the road capacities, and the travel
times are obtained from OpenStreetMap data and simplified.
The resulting road network, containing 25 nodes and 147 road
links, is shown in Figure 2.

Fig. 2. Left: Census tracts and simplified road network for Dallas-Fort Worth.
Right: Texas power network model (from [11]).

The battery capacity and power consumption of the EVs
are modeled after the 2017 Chevrolet Bolt [5]. The cost of
operation of the vehicles, excluding electricity, is 48.6c/mile,
in accordance with DOT guidelines [4]. The fleet consists of
150,000 EVs, i.e. 1 AMoD vehicle for every 2.67 customers,
similar to the 2.6 ratio in [22]. To represent the possibility that
vehicles might not begin the day fully charged, each EV starts
the day with a 50% battery charge and is required to have the
same level of charge at the end of the simulation.

We adopt a synthetic model of the Texas power network pro-
vided in [11] and portrayed in Figure 2. The model provided
does not contain power generation costs: we labeled each gen-
erator according to its source of power and assigned generation
costs according to U.S. Energy Information Administration
estimates [6]. The model is also time-invariant; to model the
time evolution of power loads and the availability of solar
and wind power we used historical data from ERCOT, Texas’s
ISO, and we imposed ramp-up and ramp-down constraints of
10%/hr and 40%/hr on the generation capability of nuclear
and coal power plants, respectively.

We compare the results of three simulation studies. In the
baseline simulation study, no electric vehicles are present:
we consider the power network in isolation subject only to
exogenous loads. In the P-AMoD simulation study, we solve
Problem (10), which embodies the cooperation between the
TSO and the ISO. Finally, in the uncoordinated simulation
study, we first solve the TSO’s Vehicle Routing and Charging
problem with fixed electricity prices obtained from the baseline
simulation study; we then compute the load on the power
network resulting from the vehicles’ charging and discharging,
and solve the ISO’s Economic Dispatch problem with the up-
dated loads. The uncoordinated simulation study captures the
scenario where the TSO attempts to minimize its passengers’
cost while disregarding the coupling with the power network.

Table I and Figure 3 show the results.
TABLE I

SIMULATION RESULTS (ONE COMMUTING CYCLE, 10 HOURS).
Baseline P-AMoD Uncoord.

Avg. cust. travel time [h] - 1.2532 1.2532
Tot. energy demand [GWh] 517.498 520.541 520.979

Tot. electricity expenditure [k$] 39,604.71 39,264.84 39,629.50
w.r.t. baseline [k$] -339.87 +24.79

Avg. price in DFW [$/MW] 78.68 75.79 77.47
TSO tot. elec. expenditure [k$] - 227.98 296.82

The quality of service experienced by TSO customers,
measured by the average travel time, is virtually identical
in the P-AMoD and in the uncoordinated case. The energy
demand of the AMoD system is also very similar in both cases.
On the other hand, the effect of coordination on the overall
electricity expenditure is noticeable. Coordination between the
TSO and the ISO causes a reduction in the total expenditure for
electricity of $339,870 per commuting cycle compared to the
baseline case, despite the increased demand! In other words,
a P-AMoD system allows a TSO to deliver on-demand trans-
portation without an increase in overall electricity expenditure
– a remarkable, and perhaps surprising, finding. Instead, in
the uncoordinated case, the total expenditure for electricity
is increased by $24,790. This corresponds to a difference of
$364,066 between the P-AMoD case and the uncoordinated
case, which compounds to savings in electricity expenditure
of $182M per year (assuming two commuting cycles per day
and 250 work days per year).

Who benefits from the reduction in energy expenditure?
From the last two rows in Table I, one can see that the average
price of electricity in the P-AMoD case is 2.16% lower than in
the uncoordinated case in Dallas-Fort Worth (corresponding to
savings of $122.3M/year). The energy expenditure of the TSO
in the P-AMoD case is 23.5% lower than in the uncoordinated
case (a saving of $69,740 per commuting cycle, corresponding
to close to $35M/year). Finally, electricity customers outside
of Dallas experience a small reduction of 0.75% in their energy
expenditure. Thus, the majority of the benefits of coordination
are reaped by customers of the power network in the region
where the AMoD system is deployed; the TSO also benefits
from a noticeable reduction in its electricity expenditure.

Fig. 3. LMPs in Texas between 9 a.m. and 11:30 a.m. The presence of the
AMoD fleet can reduce locational marginal prices; coordination between the
TSO and the ISO can yield a further reduction.

Figure 3 shows this phenomenon in detail. The presence of
the AMoD system results in a decrease in the LMPs with re-
spect to the baseline case (11-11:30 a.m.). As electricity prices
increase, empty vehicles travel to carefully chosen stations to
sell their stored energy back to the network: this results in
reduced congestion and lower prices in the power network,



even in the absence of coordination. Crucially, coordination
between the TSO and the ISO can results in further decreases
in the price of electricity with respect to the uncoordinated case
(9-9:30 a.m.), significantly curtailing the impact of the AMoD
system on the power network. By leveraging their battery
capacities and acting as mobile storage units, the EVs are
able to reduce congestion in the power transmission network:
this results in lower LMPs in the Dallas-Fort Worth region,
and hence lower electricity expenditure. Simulations were
carried out on commodity hardware (Intel Core i7-5960, 64
GB RAM) and used the MOSEK LP solver. The simulations
required 3,923s for the P-AMoD scenario, 2,885s for the
uncoordinated scenario, and 4.55s for the baseline scenario.
While such computation times could be improved by using
high-performance computational hardware, in the next section
we present a receding-horizon algorithm for P-AMoD which,
in addition to the intrinsic robustness benefits of closed-loop
control, can be solved in seconds on commodity hardware.

V. A RECEDING-HORIZON ALGORITHM FOR P-AMOD

Leveraging the structural insights from the network flow
optimization problem of the previous sections, along with
a few mild assumptions, we next devise a receding-horizon
algorithm that is robust to the uncertainty in future demand.
Additionally, this algorithm trades off some suboptimality,
which we characterize with simulations, for very fast com-
putation times. Due to space limitations, we only provide a
high-level description of the algorithm: a detailed description
will be provided in the journal version of this paper.

To reduce the computational complexity of the optimization
problem, we decouple the customer routing process from the
P-AMoD optimization. The key assumption is that customer-
carrying trips follow pre-computed routes and are never in-
terrupted by a charging/discharging event. Formally, customer
trips from node i ∈ VR to node j ∈ VR follow a fixed route
with a travel time of ti→j and a required charge of ci→j .
Thus, customer flows {fB,dB

(u,v)}(u,v),dB
are no longer part

of the optimization variables and Equation (9a) is redundant.
However, the initial and final charge of the customer-carrying
vehicles {λc,inm } and {λt,c,out

m } remain optimization variables.
The following constraint ensures that charge is conserved
along customer routes, that is, that vehicles traveling from i
to j and departing at time t at charge level c arrive at time
t+ ti→j with charge c− ci→j :

λt,c,out
m =

{
λ
c+cvm→wm ,in
m if tm = t− tvm→wm

0 otherwise
(11)

for all t ∈ {1, . . . , T}, c ∈ {1, . . . , C},m ∈ {1, . . . ,M}. The
cost function is also modified to remove the customers’ travel
times, and road congestion constraints are adjusted to account
for the traffic induced by customer-carrying vehicles.

The optimization problem is solved in receding-horizon
fashion. The solution to the problem is, in general, fractional:
control actions for the vehicles are computed by sampling the
first time step of the solution.

We assess the performance of the receding-horizon
P-AMoD controller with an agent-based simulation based on
the same case study considered in the previous section. The
receding-horizon problem is solved every two minutes with a
2-hour lookahead and a 30-minute time step. The performance

of the algorithm is compared with an uncoordinated receding-
horizon controller that optimizes the AMoD system’s opera-
tions under the assumption that electricity prices stay constant.

Coordination results in savings of approximately $150,000
per commuting cycle (corresponding to almost $75M/year)
with respect to the uncoordinated algorithm. In particular,
cooperation results in 0.88% lower electricity prices in Dallas-
Fort Worth. The TSO’s expense in the coordinated case is
comparable with the expense computed in Section IV, which
represents an upper bound on the performance of a receding-
horizon P-AMoD controller. On the other hand, the average
price of electricity in Texas increases by 1.7% compared to the
baseline case studied in Section IV. This is not unexpected,
as we use a short 2-hour lookahead. An important direction
of future research is to perform a detailed sensitivity analysis,
and in particular to explore how the lookahead time affects the
tradeoff between computational complexity, economic savings,
and robustness to inaccuracies in demand forecasting. The
receding-horizon P-AMoD problem was solved in an average
of 2.09s; thus, the algorithm is amenable to closed-loop control
of large-scale systems.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied the interaction between an AMoD
system and the power network. The model we proposed
subsumes earlier models for AMoD systems and for the
power network; critically, it captures the coupling between the
two systems and allows for their joint optimization. We also
proposed a numerical procedure to losslessly reduce the di-
mensionality of the P-AMoD optimization problem (Eq. (10)),
making realistic problems amenable to efficient numerical
optimization on commodity hardware. We applied our model
to a case study of an AMoD deployment in Dallas-Fort Worth,
TX. The case study showed that coordination between the TSO
and the ISO can result in a reduction in the overall electricity
expenditure (despite the increase in demand), while having a
negligible impact on the TSO’s quality of service. Finally, we
presented a receding-horizon algorithm for P-AMoD that de-
livers computation times in the order of seconds and provides
built-in robustness to uncertainty in future demand at the price
of some suboptimality.

This work opens multiple avenues of research. First, the
model in this paper assumes that the TSO and ISO are willing
to collaborate and share their private information. In the ex-
tended version of this paper [19], we propose a pricing scheme
that enforces the social optimum as a general equilibrium
and a distributed algorithm that allows the agents to compute
the market-clearing prices without sharing private information.
Second, we plan to capture the impact of cooperation between
the TSO and the ISO on the power distribution network by
incorporating convex optimal power flow models. Third, the
model of the power network considered in this paper does
not capture ancillary services such as regulation and spinning
reserves. We will extend our model to capture those and
evaluate the feasibility of using coordinated fleets of EVs to aid
in short-term control of the power network. Finally, we wish
to explore the effect of TSO-ISO coordination on penetration
of renewable energy sources, and to determine whether large-
scale deployment of AMoD systems can increase the fraction
of renewable power sources in the generation power mix.
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