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Abstract—Autonomous planning and scheduling is a key en-
abling technology for future robotic Solar System explorers:
as missions venture farther in the Solar System, light-speed
delays and low available bandwidth make on-board autonomy
increasingly attractive to maximize science returns and enable
otherwise-infeasible observations of transient phenomena, e.g.
storms on gas giants and plumes on icy worlds. However,
ground operations of future autonomous explorers will require
a paradigm shift, moving from the current practice of specifying
timed sequences of commands to specifying high-level goals that
on-board autonomy should elaborate based on the spacecraft’s
state and on the sensed environment. In this paper, we explore
the problem of adapting ground operations processes, roles,
and tools to accommodate on-board planning and scheduling.
We design and prototype a framework of user interfaces and
algorithmic tools to support uplink and downlink processes of
future autonomous spacecraft. The framework’s goals are to
allow scientists and engineers to both convey their desired intent
to the spacecraft in a format compatible with the on-board
planner, and reconstruct and explain the decisions made on-
board and their impact on the state of the spacecraft. We
assess the performance of the framework through a design
simulation where JPL scientists and operators simulate realistic
operations of an Ice Giant multi-flyby mission concept, aided
by the proposed framework. The design simulation confirms
that the proposed approach holds promise to enable operators
to interact with on-board autonomy, and suggests a number
of recommendations for the next generation of operations tools
supporting autonomous spacecraft.
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1. INTRODUCTION
On-board spacecraft autonomy is key to enabling high-
priority scientific investigations of fast-changing phenomena
such as storms on gas giants and plumes on icy worlds. The
temporal variability of these phenomena, combined with high
light-speed latency and very limited downlink bandwidth,
precludes traditional human-in-the-loop operations, requiring
spacecraft to make autonomous system-level decisions with-
out consulting scientists and operators on the ground.

A number of on-board autonomy capabilities for planning
and scheduling [1], [2], [3], [4], [5], event detection [6],
autonomous orbital [7] and surface [8], [9] navigation, and
fault management [10] have been demonstrated to high tech-
nology readiness level. Some of these capabilities have been
already adopted as part of routine operations workflows in
planetary missions, such as autonomous event detection and
navigation for surface exploration missions. However, the
problem of designing mission operations to accommodate
on-board planning and scheduling remains an active area of
research.

Autonomous planning and scheduling allows a spacecraft to
plan and execute activities opportunistically, based on previ-
ous observations and on availability of on-board resources;
for instance, an autonomous planning module can decide to
perform follow-up observations of a detected event of interest
(say, a transient plume) if sufficient power, thermal, and data
volume resources are available, potentially increasing science
returns compared to pre-planned sequences, and providing
access to otherwise-unobservable short-duration phenomena.
However, this concept of operations requires a radical re-
thinking of ground operations [11]. During uplink operations,
scientists and operators must provide the on-board planner
with their intent, represented as a prioritized set of high-level
activities (each characterized by pre-conditions and expected
effects) that the spacecraft should attempt to accomplish, and
assess the likely outcome of such intent on the spacecraft
state — a radical departure from current operations, where
operators compose a sequence of commands, each with a
prescribed start time and maximum duration, and the space-
craft executes the sequence. During downlink operations,
in turn, engineers must reconstruct the planner’s decisions,
assess their impact on the spacecraft state, and identify any
anomalies that may be masked by the presence of on-board
autonomy — a significantly more complex task compared
to the current practice of confirming nominal execution of a
prescribed sequence, whose impact on the spacecraft state is
comparatively more predictable in advance.
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In this paper, we present the results of a two-year effort
to develop and test workflows, user interfaces, and tools
designed to bridge this gap, supporting operators of future
autonomous robotic explorers.

State of the Art

Operations of conventional spacecraft—Current deep space
explorers and Earth observation spacecraft are typically op-
erated through a ground-in-the-loop process where operators
uplink sequences of commands that the spacecraft performs
at prescribed times (or they command staged on-board se-
quences to be executed); an on-board executive may also ver-
ify that specific conditions are met before a task is executed
[12]. Most of the existing work on the uplink operations has
focused on the traditional paradigm of generating sequences
of commands (with significant margins to cope with uncer-
tainty) on the ground. The process of generating sequences is
done either manually (i.e. operators think through the desired
commands and their timing, and explicitly encode a sequence
in a format that the spacecraft can execute), or using ground-
based planning tools that develop and validate a sequence
based on high-level goals specified by the operators [13],
[14], [15], [16]. In the latter case, operators have to specify
not only a dictionary of commands and how they should be
executed, but also high-level activities and tasks (with their
respective set of pre-conditions, effects, resource constraints,
and temporal constraints) and goals that need to be satisfied
by the ground-based automated planners when generating a
sequence.

These automated planners traditionally have high computa-
tional cost, which makes on-board deployment impractical
for most planetary missions, where computational resources
are limited. As planning algorithms become more efficient
and available on-board computational resources increase, the
planning process is likely to gradually move on-board. In
this case, we will no longer uplink sequences but rather intent
expressed as goals – a path that has been pursued in Mars
2020 rover operations with the on-board planner [17], [18].
However, this new paradigm creates challenges for the uplink
process with respect to capturing operators’ intent and cre-
ating goals, commands, activities, constraints and spacecraft
models: if these elements are not well specified, critical sci-
ence opportunities and observations may be lost, potentially
jeopardizing the achievement of primary mission objectives.
These challenges are amplified for spacecraft that need to be
operated further into the Solar System, such as missions to the
Ice Giants, where the mission has limited communications
bandwidth, short-duration science opportunities, and large
uncertainty related to the environment and target science
observations. Uplink operations of future autonomous space-
craft will require an iterative design process of intent that
helps operators not only build the right set of goals, but also
understand the possible outcomes, and trust that the on-board
planning and scheduling software will achieve the desired
intent. To our knowledge, no existing tools or framework
fully addresses this iterative uplink process specifically for
on-board autonomy. Moreover, it is common to see tools
developed in an ad-hoc fashion that do not provide a fully-
integrated experience for the uplink-downlink cycle.

For downlink, in turn, spacecraft typically transmit three
classes of data products to ground operators: (i) chan-
nelized data, which provide time-series measurements of
key variables representing the state of the spacecraft; (ii)
event notifications [commonly referred to as event records,
or EVRs, at the Jet Propulsion Laboratory (JPL)], short
time-stamped messages reconstructed to a text string on the

ground, produced by on-board flight software when pre-
scribed conditions are satisfied; and (iii) binary data products,
which encompass a variety of files including instrument data,
engineering images, and any other file produced by the on-
board software for downlink. Downlink operators examine
the downlinked channelized data, EVRs, and data products to
assess whether the spacecraft correctly executed the sequence
that was uplinked, whether any errors were raised by the
flight software and reported in EVRs, and whether the space-
craft state (as measured by the channelized data) fits within
nominal bounds. A variety of tools have been developed
to assist operators in this effort, allowing ground operators
to automatically verify whether the downlinked data satisfies
user-prescribed rules (ranging from simply checking whether
a value lies within bounds, to assessing whether the sequence
of EVRs received matches a prescribed pattern), including
AMPCS [19] and VISTA [20], part of NASA’s Advanced
Multi Mission Operations System (AMMOS) [21]. Tools
such as Jupyter notebooks [22], [23] are also routinely used
to examine downlinked data in detail through custom Python
scripts. Further, a new system called Rounds is in use by
several JPL missions to perform more complex automated
analysis of telemetry than was possible via legacy chan-
nel alarm checks. However, critically, existing tools and
workflows assume that the spacecraft’s nominal course of
action is known in advance (namely that, in the absence of
failures, the spacecraft will fully execute the uplinked se-
quence), and focus on identifying and highlighting deviations
from this expectation; in contrast, with on-board autonomy,
the spacecraft’s decisions are not fully known in advance,
which introduces a major challenge for downlink operators
accustomed to monitoring nominal sequence execution.

On-board planning and scheduling—Several on-board plan-
ning and scheduling tools for autonomous spacecraft have
been demonstrated to high technology readiness levels, in-
cluding the CASPER on-board planner for the EO-1 space-
craft [24], the Remote Agent Planner/Scheduler for the DS-
1 spacecraft [1], the MEXEC planner demonstrated on the
Asteria spacecraft [3], and the onboard planner currently
under development for the Mars 2020 Perseverance rover [4],
[5]. Operational tools such JPL’s Crosscheck [25] have been
developed to help operators interact with such planners when
they are used on the ground (i.e., when the planner is used
by operators to create a sequence that is then uplinked to
the spacecraft). However, no tools are currently available
to interact with on-board planners—a critical gap which this
effort aims to overcome.

Contribution

Our contribution is threefold.

First, building upon our prior work [26], we assess required
changes to operations workflows to support autonomous
spacecraft. We identify new required roles, including an
“autonomy engineer” dedicated to supporting the translation
of operators’ intent into goals understandable by on-board
autonomy software and interpreting the on-board software’s
decisions. We also assess the need for new software tools
to support these roles: in particular, operators will need user
interfaces and algorithms to support the capture of scientific
and engineering intent; simulate and assess the likely out-
comes of their intent, both at the tactical level (i.e., what
tasks will be executed on board) and at the strategic level
(i.e., how the tasks will help achieve high-level scientific
requirements); and reconstruct decisions made by on-board
autonomy software, understand their rationale, and assess
their impact on on-board resources.
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Second, we design and prototype nine user interfaces and two
sets of algorithmic tools designed to fulfill these requirements
and increase operability and trust amongst operators.

Finally, we conduct an in-depth design simulation [27] where
JPL spacecraft operators enact the proposed workflow and
interact with the tools we designed, simulating the operations
of an autonomous spacecraft in the Neptune-Triton system
across multiple flybys; the design simulation assesses the
suitability of the proposed workflow and tools, and identifies
critical directions for future development.

Organization

The rest of the paper is organized as follows. In Section
2, we formally define the problem of operating autonomous
spacecraft, and lay out our assumptions. Section 3 dis-
cusses the proposed workflows and roles for operations of
autonomous spacecraft, and highlights key differences with
respect to traditional, ground-in-the-loop operations. Section
4 describes the user interfaces and algorithmic tools devel-
oped in this effort, and the design thrusts motivating their
selection and development. In Section 5, we describe how the
performance of the proposed workflow, tools, and algorithms
was evaluated through a design simulation; the findings and
recommendations stemming from the design simulation are
reported in Section 6. Finally, in Section 7, we summarize
our results and lay out directions for future research.

2. PROBLEM STATEMENT
A number of autonomous capabilities have been devel-
oped for robotic Solar System explorers, including au-
tonomous planning and scheduling, autonomous locomotion,
autonomous failure detection, identification, and recovery
(FDIR), and autonomous detection of targets of scientific
interest. In this work, we focus on developing operations
tools for on-board autonomous planning and scheduling. We
also assume the availability of on-board autonomous event
detection (e.g., [6]), but we do not specifically focus on
operations of such tools, except to the extent that they interact
with on-board planning and scheduling (e.g., a detection of
an event might trigger scheduling of follow-up observation
activities).

We define the autonomous on-board planning and scheduling
problem as follows.

Problem 1 (On-board planning and scheduling) Consider a
spacecraft characterized by a set of states that affect au-
tonomy decisions and that can be measured on-board (e.g.,
available power, temperature, and availability of certain in-
struments, or whether a scientific phenomenon of interest has
been detected). Ground operators provide the spacecraft with
a list of high-level activities that should be executed, ordered
according to their priority; each activity can only be executed
if certain state constraints are satisfied (for example, an in-
strument may only be turned on if the temperature falls within
specific ranges; or a follow-up observation may only be
executed if a phenomenon of interest has been detected). The
expected impact of executing an activity on the spacecraft
states is also assumed to be known (e.g., turning on a heater
is expected to increase both temperature and power draw by
a known amount). The data structure encoding the tasks and
their priority, impacts, and constraints is denoted as a task
network. The on-board planning and scheduling problem
consists of selecting which activities should be executed, and
when, so as to maximize a given utility (e.g., the the number

of observation activities that are executed), while ensuring
that spacecraft state and temporal constraints are satisfied.

On-board planning and scheduling systems that solve the
planning and scheduling problems (referred to as “planners”
in this paper) have been developed to high technology readi-
ness level [3], [5], and demonstrated in spaceflight. However,
to date, the problem of how ground operators and scientists
will interact with such on-board autonomy largely remains
an open question.

Uplink operations for future autonomous spacecraft will have
to solve the intent capture problem: that is, how to capture
and translate operators’ latent intent, and the many trade-offs
between science and engineering goals inherent in spacecraft
operations, into a specification that can be used by on-board
autonomy software, as opposed to a scripted sequence of
commands. Downlink operations, in contrast, will focus on
reconstructing and explaining the spacecraft’s autonomous
decisions, and assessing the spacecraft’s state and health—
a problem made significantly more complex by the presence
of on-board autonomy.

We define the problems of uplink operations for autonomous
spacecraft and downlink operations for autonomous space-
craft as follows:

Problem 2 (Uplink operations of an autonomous spacecraft)
Consider a spacecraft equipped with on-board autonomous
planning and scheduling capabilities. Develop a workflow,
user interfaces, and algorithms to assist scientists and space-
craft operators in (i) defining a task network, i.e., a set of
prioritized tasks, associated with state constraints and state
impacts, that can be used as an input by the spacecraft’s on-
board autonomy to generate plans that capture the intent of
scientists and ground operators, and (ii) understanding and
evaluating the possible outcomes given the task network,
the on-board autonomy capability, and uncertainty about the
spacecraft and its environment.

Problem 3 (Downlink operations of an autonomous spacecraft)
Consider a spacecraft equipped with on-board autonomous
planning and scheduling capabilities, and a task network
provided to the spacecraft by uplink operators. Develop a
workflow, user interfaces, and algorithms, and identify data
products that should be downlinked so that operators can (i)
understand what tasks were executed on board, (ii) under-
stand why the on-board autonomy software scheduled these
tasks (and not others) for execution, and (iii) reconstruct and
assess the state of the spacecraft, including any uncertainty
associated with it.

In the rest of this paper, we propose and evaluate workflows,
user interfaces, and algorithms to address these challenges.

3. WORKFLOWS FOR AUTONOMOUS
SPACECRAFT OPERATIONS

In this section, we describe a proposed workflow for au-
tonomous spacecraft operations, and highlight new roles and
tools that will be required to support such operations. A
preliminary version of the workflow was presented in [26].

Most missions plan across several planning cycles with vary-
ing time horizons. We refer to longer planning cycles as
“strategic” and shorter cycles as “tactical”. While significant
planning occurs at a strategic level, starting prior to launch,
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we envision that the majority of the key operational changes
due to autonomy will occur at the tactical level; accordingly,
we focus on the design of a tactical level planning workflow
incorporating data collected in prior downlinks, where intent
is revisited and tasks are created, updated, or deleted for the
next planning cycle.

Uplink Operations

The proposed workflow builds upon conventional uplink op-
erations consisting of three core operator groups: science
and instruments (consisting of scientists, instrument engi-
neers, and the science operations working group, or SOWG),
spacecraft engineering (including the spacecraft engineer and
the data management engineer), and cross-cutting (including
mission planners and autonomy engineers). Each group must
capture their intent, in the form of a task network (defined in
Problem 1), so it can be conveyed to a spacecraft with on-
board autonomy. This operations concept builds on iterative
planning approaches used in conventional operations. Op-
erators infer the impact of their intent in a model-predict-
adjust process [26], integrating intent capture, modeling,
outcome prediction, and assisted explanation of predictions.
This process aims to build operator trust that the on-board
autonomy will achieve their goals.

Workflow Process—Engineering teams review initial condi-
tions (i.e., the expected spacecraft state at the beginning of
execution of the next plan) at the beginning of a tactical
planning cycle, while the science team identifies new desired
science observations or updates to existing observations. Sci-
entists and engineers then have an opportunity to change the
specified intent, in the form of a task network, and receive
near-instantaneous assessment of its possible impacts on the
mission in the “predictions” phase (described below) using
simulations.

Scientists may change their intent specification with new
goals and prioritize them in negotiation, resulting in different
spacecraft behavior. We note the autonomy engineer role as
a key operator responsible for owning system-level auton-
omy, ensuring sound autonomous algorithms and behavior,
and troubleshooting undesirable outcomes from simulation to
maximize performance.

The team executes simulations to predict how the task net-
work will be executed on-board (increasing coverage of un-
certainty elements and fidelity of simulation as needed), ana-
lyzes the results, and adjusts intent accordingly. Inspection of
simulation results (either individually or as clusters of likely
outcomes) may lead the team to adjust or remove goals.

New Tooling—This highly iterative process calls for new tool-
ing to support the proposed collaboration between teams, and
software capable of (i) capturing intent from different groups
and representing it in the form of task networks, (ii) running
Monte Carlo simulations, and (iii) visualizing and analyzing
predictions of possible outcomes from the simulations. Tool-
ing should also afford the ability to capture environmental,
science, and spacecraft performance variability in order to
capture a realistic distribution of possible outcomes.

Downlink Operations

In downlink operations for current flight projects, several
downlink engineers typically monitor and review spacecraft
systems and reports to feed forward data for uplink plan-
ning using dashboards, scripts, reports, graphics, and 2D/3D
views, and interactive and exploratory tools.

Workflow Process—The science team must analyze down-
linked data to understand whether their intent has been
achieved. Because the uplinked plan may embody a wide
range of possible outcomes, downlink operators must recon-
struct which tasks were executed, and understand why those
tasks (and not others) were selected by the on-board planner.
The spacecraft team must also analyze the health and safety
of spacecraft subsystems, and reliably estimate the space-
craft’s state. An autonomy engineer with in-depth knowledge
of on-board autonomy can help explain behavior and connect
uplink predictions to the spacecraft’s reconstructed behavior.
All teams must converge on shared understanding of down-
linked data, and build models to stage initial conditions for
uplink planning.

New Tooling— The process described above imposes two
needs with respect to tooling. First, tools must reliably
reconstruct on-board state and plan execution, possibly in
the face of limited downlinked data. This reconstruction,
denoted as “actuals”, must be compared to the set of possible
outcomes from uplink planning, and connected to the opera-
tors’ intent. Second, tools must enable investigation such that
operators can interpret why the on-board autonomy software
made decisions, despite potentially limited information from
the planner due to limited bandwidth. To address this, we pro-
pose building user interfaces that enable users to observe cor-
relations between different data sources (e.g., executed tasks,
spacecraft states used by autonomy, and EVRs produced by
flight software), so as to increase the operators’ situational
awareness, and provide them with all relevant information
to form a mental model of the autonomy’s decisions—all
the while avoiding to overwhelm them with superfluous or
redundant information.

4. USER INTERFACES AND ALGORITHMS
We are now in a position to describe the user interfaces and
algorithmic tools developed to address the operators’ needs
outlined in Section 3. All user interfaces were designed
in detail, and selected interfaces were also implemented as
interactive browser-based applications; implementation of the
remaining user interfaces is ongoing.

Uplink User Interfaces

Science Planning— The Science Planning tool (Figure 1),
tailored to operations of orbiters and flyby missions, supports
adding and updating science goals and related activities in the
task network. It gives scientists visibility into what science
goals are active during a selected time period, where along the
trajectory a desired observation can be performed, and how
the observation conflicts with other possible activities. To
edit the task network, scientists can view and update the pri-
ority of observation tasks, view and update the logic driving
conditional execution of tasks, and preview what outcomes
may happen as a result of modifications to the task network.
2D or 3D graphical views of the target system provide a
preview of the observation geometry. Upon modifying the
goals, the team can see how the changes impact predicted
progress towards the goals through simulations. The Science
Planning tool leverages concepts from Science Opportunity
Analyzer [28] (e.g., opportunity search and design with pre-
view graphics) and VERITaS [29] (e.g., science requirements
modeling and measurement).

Task Network Editor—In this work, intent is ultimately rep-
resented as a task network, described in Problem 1. This
particular representation is the foundation of timeline-based
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Figure 1. Science Planning tool: visualizes science data,
aids identification of science opportunities, and allows

scientists to add and update science goals.

Figure 2. Task Network Editor: enables operators to create
and edit task networks. This tool is implemented as a

browser-based application.

temporal planning and Hierarchical Task Network planning.
While our proposed framework is general, our current im-
plementation uses MEXEC [3], [30] as the core planning
and execution system on-board the spacecraft. Therefore,
capturing intent follows the task network formulation de-
scribed in [3], meaning that goals are expressed in the form of
tasks, including their pre-, post- and maintenance conditions,
impact constraints, temporal and resource constraints, and
priorities, as well as ordering constraints and hierarchical
decomposition of tasks into sub-tasks.

The Task Network editor shown in Figure 2 is a tool for
creating and visualizing task networks. Engineers, autonomy
experts, mission planners and operators may create, update,
delete, and validate tasks either from scratch or starting from
templates, and preview simulation outputs running a planner
such as MEXEC. The tool provides a high-level view of
science campaigns, and lets users create and inspect subtasks.

This tool centralizes intent capture and representation from
different teams. For example, the observational goals pro-

vided through the Science Planning tool are added as tasks
in the task network representation managed by the Task
Network editor, i.e., goals are merged and represented as a
task network. Such a representation matches semantically
with MEXEC’s input; the tool provides a translation process
from the task network graphical representation to the input
format required by MEXEC.

The Task Network Editor’s design was informed by plan-
ning and sequencing tools including SEQGEN [31], APGEN
[32], and COCPIT [33] (e.g., scheduling, validation, and
plan timeline visualization), as well as Crosscheck [25](e.g.,
explainability, visualizations of planning cycles).

Figure 3. Metrics tool: traces mission science objectives to
operational requirements. This tool is implemented as a

browser-based application.

Metrics—The Metrics tool (Figure 3) captures the traceabil-
ity of mission science objectives all the way from Level
1 (L1) requirements (requirements from the customer) [34]
down to performance metrics as expressed in operational
requirements. The original version of the tool was presented
in [26]; in this work, we have added explicit connections
between L1 requirements and metrics. Metrics define the
quantity and quality of science data that need to be collected
in order to answer a science question. L1 requirements can
be satisfied with combinations of metrics, and users can
encode the logic relating them in the Metrics tool. While
users can review completed and projected metric success
within the Metrics tool, the metrics data is also integrated
into other tools to support tracking of the mission progress
and making trade-offs between different version of the task
network. The Metrics tool builds off of the Clipper M-
STAF/P-STAF [34] [35], specifically its structure and use of a
science traceability framework, as well as VERITaS [29] and
CLASP [36], both tools for modeling of science requirements
and measurements.

Variability—The Variability tool, shown in Figure 4 and origi-
nally proposed in [26], allows a user to specify a desired level
of uncertainty for environmental and spacecraft parameters
to be used in Monte Carlo simulations. It captures both
engineering and science variability, where engineering vari-
ability describes the spacecraft performance (e.g., task dura-
tion, power draw, and size of data products) when executing
tasks, and science variability describes the environment (e.g.,
how many features of interest are present, the size of such
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Figure 4. Variability: captures spacecraft and
environmental variability used in simulations. This tool is

implemented as a browser-based application.

features, and start and end times of time-varying features).
Users can specify different types of parameterized probability
distributions, and set the distribution’s parameters. Monte
Carlo simulations using variability drawn from the user-
specified distributions help operators identify edge cases and
potentially unfavorable outcomes, as well as exceptionally
favorable outcomes. For science variability, operators can
validate their inputs with visual previews. The tool leverages
concepts from the Mars 2020 planning tools [37] and work on
probabilistic assessment of failure risk of the Europa Clipper
spacecraft due to radiation [38].

Figure 5. Prediction: Supports analysis of Monte Carlo
simulation results. This tool is implemented as a

browser-based application.

Prediction—The Prediction Outcomes tool (Figure 5) sup-
ports visualization of the wide range of executions produced
by Monte Carlo simulations. It allows operators to see, at
a high-level, the distribution of executed and skipped tasks,
and the related spacecraft states, observed in the simula-
tions. Operators can inspect the performance of individual
simulations and understand the conditions that led to them,
helping inform decisions to edit the task network. Executions

and outcomes can be clustered based on goals achieved and
tasks executed, and also on the presence of anomalies. The
likelihood of each cluster may help scientists identify whether
they might achieve the science they need. The tool leverages
concepts from planning and scheduling tools including Raven
[39] and Copilot (Mars 2020 Rover) [37], as well as VERITaS
[29].

Figure 6. Mission Outcome: communicates mission-level
impacts of Monte Carlo simulations.

Summary (Mission Outcome) —The Mission Outcome tool
(Figure 6), originally proposed in [26], shows the results
of many Monte Carlo simulations for the duration of the
mission to support analysis of changes to intent from the
strategic perspective. It highlights the difference between
a new proposed task network and a baseline one in terms
of key trends, campaign success rate (as measured by the
metrics specified in the Metrics tool), and likely outcomes.
This tool helps users identify whether a change to the task
network has unintended impacts, or if that change supports
campaign progress. The tool leverages modeling concepts
from VERITaS [29] and CLASP [36], as well as work on
probabilistic assessment of failure risk of the Europa Clipper
spacecraft due to radiation [40](e.g., visualization of possible
mission outcomes).

Downlink User Interfaces

Plan Reconstruction —The Plan Reconstruction tool (Figure
7) plays back what the spacecraft planned to do based on
estimated state and resource values in incremental steps, and
shows what tasks were actually executed, so that downlink
operators can assess what the on-board planner did and deter-
mine the cause of its decisions [41]. To alert users to the status
of executed goals during playback, indicators show whether a
task is “complete,” “in progress,” “incomplete,” or “waiting”
to be scheduled. The reconstructed plan can be compared
to clustered predicted outcomes shown in the Prediction Out-
comes tool. When users roll over executed tasks that captured
images or science measurements, they can view the related
downlinked data products (e.g., captured images), helping
situational awareness. The tool also contains state estimation
features (described next) that allow the reconstruction of on-
board states based on (possibly incomplete) telemetry and on
models of the spacecraft. The uncertainty of the estimate is
also visualized to ensure the operator is not overconfident in
the estimates. The design of the tool was inspired by existing
downlink subsystem dashboards, and by JPL’s SEQGEN [31]
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Figure 7. Plan Reconstruction: Step-by-step planner
playback and comparison to prediction clusters.

and Crosscheck [25].

Figure 8. Data Management Dashboard: Displays predicted
and actual downlinked products.

Data Management Dashboard— The Data Management
Dashboard (Figure 8) displays information relevant to the
Data Management Engineer. Specifically, it includes a table
of predicted and actual data products that were downlinked,
resource views containing the total current storage and total
storage percent remaining, and resource prediction overlays
organized by cluster. A table displaying EVRs is filterable by
subsystem or instrument.

Power Dashboard—The Power Dashboard (Figure 9) is an
example of a subsystem-specific dashboard that utilizes the
outcome prediction component, curated resource views, and a
filterable EVR table. Specific to this dashboard is the display
of Battery State of Charge, Spacecraft Subsystem Data Draw,
and Instruments Subsystem Draw. Overlaid on the resources
are indicators of when tasks impacting the spacecraft’s power
state were executed.

Algorithms

Prediction Engine— The prediction engine (illustrated in
Figure 10) allows operators to assess the range of possible
outcomes for a given task network and a given level of
uncertainty (specified in the Variability tool). The prediction

Figure 9. Power Analysis: Example of a subsystem specific
dashboard that utilizes outcome prediction and EVR table.

engine allows to run large-scale Monte Carlo simulations,
sampling stochastic conditions according to the Variability
tool’s inputs, and outputs the empirical distribution of out-
comes of the simulations. As such, the Prediction Engine
is responsible for three main steps: (i) sampling variability
distributions, (ii) running a simulation of the spacecraft and
its environment with the sampled variability as an input,
and (iii) recording all pertinent outputs and resulting state
information into a shared database that can be queried by
operators.

Figure 10. Overview of the architecture of the Prediction
Engine.

In order to sample the variability distributions, we use a
Monte Carlo approach [42]. Such an approach has been
used previously on the M2020 Perseverance Rover mission
to predict and visualize rover plan execution with the Copilot
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tool [37]. Variability distributions defined in the Variability
tool are used as an input into the Prediction Engine, using
the distributions to produce a series of sampled inputs into
the simulator. Since the Monte Carlo method needs a large
number of sampled cases to be effective, a key design driver
is the ability to efficiently run hundreds to thousands of
high-fidelity simulations (which can require tens of hours of
computation each) in parallel. While simulations can run
faster than real-time, the speedup is limited, and requires
intensive computing resources. In order to more easily deal
with these requirements, we built the Prediction Engine on
Kubernetes, an open-source container orchestrator, to give us
the ability to easily scale resources and achieve parallelism
in our simulations [43]. Not only does Kubernetes enable
efficient orchestration and dynamic scaling, but it also easily
allows the deployment of the engine on a cloud provider
to help meet the computing requirements of our simulation.
The output of the simulations are stored in a PostgreSQL
database [44], also hosted in the cloud. With Kubernetes, the
Prediction Engine is designed to be highly configurable, not
only in terms of specifying simulation parameters such as the
number of runs, but also in terms of configuring the degree of
parallelism and the amount of computing resources available.

Since each simulation run in Monte Carlo is treated inde-
pendently, we selected a generator-worker approach to infuse
parallelism into the Prediction Engine. In this approach, the
generator is responsible for performing the sampling over the
variability distribution, converting the samples into the input
format required by the simulator, and adding this input onto a
shared work queue, repeating this process for the number of
simulations specified by the configuration. Meanwhile, many
workers are tasked with taking input requests from the shared
work queue, running a simulation based on the sampled
input, storing the simulation output in the shared database,
and shutting down if no items remain on the work queue.
While the number of workers that can be run in parallel
is compute-limited, we were able to achieve a speedup of
roughly 400x when comparing against sequential real-time
simulations. Figure 10 shows the high-level workflow of the
Prediction Engine, from sampling to storing outcomes.

State Estimation—We have developed and implemented a set
of algorithmic tools to model continuous spacecraft states
and their relationships with on-board measurements. With
these models, downlink operators can estimate and infer
states based on received telemetry even if the data is sparse,
noisy, or corrupted. In this project, we use three different
sets of tools including factor-graph-based and task network-
based estimation algorithms for continuous states, and Hid-
den Markov Model-based algorithms to estimate discrete
states.

• Factor Graph-Based Estimation — This set of tools uses
factor graph representations of the spacecraft and environ-
ment [45]. We use factor graphs to model probabilistic
relationships between states of the spacecraft and its environ-
ment, and the spacecraft’s observations. As shown in Figure
11, in factor graphs, vertices represent spacecraft states at a
point in time, and edges (denoted as factors) represent the
probabilistic relationships between the states and the mea-
surements received on the ground. The goal of factor graph-
based estimation is to identify the most likely set of states
given the measurements received and the known probabilistic
relationships between states. Nonlinear optimization tools
are used to find the maximum-a-posteriori (MAP) estimate
of the most likely states, e.g., the set of state variables that
best explain the spacecraft’s observations.

Figure 11. An example of a factor graph that shows the
probabilistic relationship between state x and measurement
y at different time steps. In this example P(xt|xt + 1),

P(xt|yt), and P(xt) represent the probabilistic relationship
between state x at time steps t and t+ 1, the probabilistic
relationship between state x and measurement y at time t,
and the initial distribution of state x at time t, respectively.

The edge between the states xt and xt+1 is multi-modal with
two hypotheses. Also, multi-modal distributions can be used

to represent the probabilistic relationships.

Factor graphs can capture multi-modal models and multi-
modal distributions of states and measurements. In multi-
modal models, multi-hypothesis factors are used to represent
separate hypotheses, e.g., the presence or absence of a phe-
nomenon of interest, or the presence of a fault in a spacecraft
sensor. In this case, factor graph optimization looks for the
hypothesis which best explains the measurements. Multi-
modal distributions such as non-Gaussian distributions can
also be used to represent nonlinear process and measurement
models and uncertain data associations, e.g., the possible
geographical location of a phenomenon of interest.
We use open source libraries to construct and solve the factor
graphs. More precisely, we use GTSAM [46] for standard
factor graphs, MH-iSAM2 [47] for factor graphs with multi-
hypothesis factors, and MM-iSAMv2 [48] for factor graphs
with multi-modal distributions. The key advantage of factor
graph-based estimation is its ability to accommodate complex
spacecraft and environment models with arbitrary relation-
ships between state variables. However, the price of such
flexibility is both significant computational complexity, and
a high modeling effort to construct the factor graphs.
• Task Network-Based Estimation for Continuous States —
A key difficulty in the use of factor graph-based tools is the
need to develop models of the spacecraft and its environment
as factor graphs—a complex undertaking that can be daunt-
ing for operators. To address this, we developed a second
set of tools designed to leverage existing spacecraft and
environment models used by on-board autonomy software,
specifically, the MEXEC planning and execution system [3],
[30].
The developed state estimator is a Kalman filter [49]. It uses
state and task impact models of the task network used by
MEXEC to construct a linear model of the spacecraft and
its environment; it reconstructs what tasks were executed
by querying EVRs downlinked by the spacecraft; and it
uses downlinked channelized data as measurements for the
estimator.
While MEXEC only uses deterministic models for tasks, the
Kalman filter accommodates probabilistic models, with user-
defined covariances, to account for execution and measure-
ment noises. More precisely, the developed state estimator
performs the following steps:
1. Task Network-to-Model: The estimator reads the task

network and builds the Kalman filter matrices accordingly.
Probabilistic state projection models are built using the task
impact models of the task network, and additive Gaussian
noises (specified separately) account for execution noises.
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Figure 12. Task Network-Based Estimation.

Also, linear measurement models with additive Gaussian
sensor noises are used to create the probabilistic measurement
models.
2. Stochastic Projection: The constructed probabilistic state

projection models and the sequence of the executed tasks
inferred from EVRs are used to obtain predicted state values,
as well as the associated uncertainties due to execution noise.
3. Update: At this step, on-board state measurements are

combined with the stochastic projections to compute the state
estimates and estimation uncertainties. More precisely, in this
process, the estimator compares the actual on-board measure-
ments with the predicted measurements obtained from the
probabilistic measurement models, and then uses the optimal
Kalman filter gain to update the states and the associated
uncertainties from the stochastic projection step.
Figure 12 shows the components of the designed estimator.
• Input-Output Hidden Markov Models for discrete states —
We also developed a set of algorithmic tools to model discrete
spacecraft states and their relationships as an Input-Output
Hidden Markov Model (IO-HMM) [50], [51], and estimate
their value based on telemetry. The proposed approach allows
operators to describe the high-level behavior of a spacecraft
as a set of interconnected components, each characterized
by inputs, outputs, and a set of discrete states, or modes.
Each component’s internal state characterizes the relationship
between the component’s inputs and outputs; the goal of the
estimation process is to estimate the state of each component.
For example, the high-level behavior of a very simple attitude
control system (ACS) can be represented as follows:

1 varType ( ’ Boolean : F a l s e , True ’ )
2 varType ( ’Command : I d l e , Track , None ’ )
3

4 componentType ( ’ s i d e r o s t a t ’ ,
5 i n p u t s = ’Command : i ’ ,
6 o u t p u t s = ’ Boolean : v a l i d ’ ,
7 modes= { ’ T r a c k i n g ’ : ’ [ ” True ” ] ’ ,
8 ’ I d l i n g ’ : ’ [ ” F a l s e ” ] ’ ,
9 ’ E r r o r ’ : { ’ [ ” True ” ] ’ : 0 . 5 , ’ [ ” F a l s e ” ]

’ : 0 . 5}} ,
10 t r a n s i t i o n s = [ ” T r a c k i n g −> I d l i n g : 0 . 9 9 : i

== ’ I d l e ’ ” ,
11 ” I d l i n g −> T r a c k i n g : 0 . 9 9 : i

== ’ Track ’ ” ,
12 ” * −> E r r o r : 0 . 0 1 ” ] )

The ACS takes as inputs the commands “Idle” and “Track”.

The ACS can be in one of three states, “Tracking”, “Idling”,
or “Error”. The module outputs “True” if it is in tracking
mode, “False” if it is in idling mode, and a uniform random
value if it is in “Error” mode. When receiving an input
command of “Idle” or “Track”, the module switches to
the corresponding internal state with 99% probability; and
switches to state “Error” with 1% probability.
The modeling language is designed to be intuitive, and easy to
use for operators with training in the tool, but no background
in state estimation.
Critically, multiple components can be combined to model
a complex spacecraft system, connecting the outputs of one
component to the inputs of another. The resulting system
can be modeled as input-output HMM, and state estima-
tion algorithms such as the Viterbi algorithm [52] and the
forward-backward algorithm [53] are employed to estimate
the value of the states of each component, given the inputs
provided to the components (which are known from EVRs
downlinked from the spacecraft) and selected measurements
of their outputs (also available as EVRs or channelized data).
The Viterbi algorithm only reconstructs the most likely state
of each component; in contrast, the forward-backward al-
gorithm is able to reconstruct the marginal distribution of
each state, at the price of slightly increased computational
complexity.
The resulting estimates are integrated in the Plan Reconstruc-
tion tool, described above, in order to assist operators in
estimating the behavior of spacecraft components such as on-
board detectors (and specifically, to identify the presence of
false positives) and other state-machine-based flight software
functions. Figure 13 shows the output of the tool, estimating
the likelihood of the state of each spacecraft component over
time, and allowing operators to correlate it with autonomy
decisions and measured spacecraft states.

Figure 13. Output of the IO-HMM state estimation tool.
The forward-backward algorithm is used to estimate the
probability distribution of the discrete states of multiple

spacecraft components. The horizontal axis denotes time;
the color of each row denotes the likelihood that the

spacecraft is in the state indicated by the row.

5. DESIGN SIMULATION
Study Design

In order to assess the suitability of the proposed framework,
including its workflow, user interfaces, and algorithms, we
performed an in-depth design simulation [27] with engineer-
ing and science teams from JPL’s operations community. In
the design simulation, eight participants were asked to role-
play uplink and downlink roles and enact two full uplink-
downlink cycles for a simulated spacecraft in a realistic
scenario including multiple instruments, conflicting science
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goals, and unexpected anomalies.

The scenario we used reproduced the operations of a notional
orbiter studying the Neptune-Triton system and, in particular,
exploring the presence and evolution of plumes on Triton
and storms on Neptune, and the gravity and magnetic fields
of the two bodies. The spacecraft carried non-gimbaled
wide-angle and narrow-angle cameras, a sub-millimeter spec-
trometer, and a magnetometer; gravity investigations were
performed by monitoring the orbiter’s location through two-
way communication with the Deep Space Network. MEXEC
was used for on-board planning. In the scenario, MEXEC
planned and scheduled activities based on the task network
provided by operators, the state of the spacecraft, and its
observations (e.g., when plumes or storms were detected,
the planner accommodated follow-up observation tasks with
different instruments).

Due to conflicting pointing requirements and to the lack of
a gimbal, camera observations and gravity measurements
were generally mutually exclusive. In addition, low available
downlink bandwidth required strict prioritization of on-board
data products, making it impossible to readily downlink all
the observations collected by the spacecraft. To further
exercise the proposed workflow and tools, two anomalies
were introduced: first, a noisy reading of the spacecraft’s bus
voltage caused the on-board planner to conservatively remove
some follow-on observations from the schedule; and, second,
bad weather at a downlink station prevented downlink of all
engineering data, hindering the operators’ situational aware-
ness and encouraging the use of state estimation tools.

Participants

Participants in the design simulation included four JPL scien-
tists and four experienced spacecraft operators. The scientists
focused respectively on investigating storms on Neptune,
plumes on Triton, the magnetic field of the system, and
its gravity field. The operators represented the roles of
autonomy engineer, mission planner, instrument engineer,
and data management engineer. Participants were introduced
to the scenario used in the design simulation, including the
instrument suite and autonomy capabilities of the spacecraft;
they also received a short, one-hour training on the framework
proposed in this work.

Procedure

The participants simulated two “day-in-the-life” uplink-
downlink cycles by role-playing operations according to
the workflow discussed in Section 3 and interacting with
prototypes of the tools presented in Section 4. The user
interfaces used in the simulation were a mix of interactive,
clickable tools (implemented as browser-based applications)
and “Wizard-of-Oz” [54] prototypes where skilled facilita-
tors manually modified the user interfaces (using the Figma
tool) in response to users’ inputs. The spacecraft and its
environment were simulated in an ad-hoc mixed-fidelity sim-
ulator that faithfully captured the spacecraft’s power state,
attitude, data management, and communications, and used
simplified models for the spacecraft’s thermal state and for its
instruments. Facilitators supervised the operations, providing
information and context to the users where needed, and incor-
porated user inputs into the tools that were not implemented
as prototypes. Each session of the design simulation was
recorded and transcribed, allowing experimenters to analyze
the operators’ interactions with the tools in detail; operators
were also asked to provide feedback both in daily written
“diaries”, and in debrief sessions with facilitators.

6. FINDINGS AND RECOMMENDATIONS
We grouped the research questions explored in the design
simulation, as well as our findings and recommendations,
into three categories: those that apply to uplink operations,
those that apply to downlink operations, and those that are
cross-cutting and apply to both. Cross-cutting findings look
at the roles, processes, and overall tooling that we designed
to support autonomous spacecraft operations. Uplink findings
focus on intent capture and outcome prediction, and downlink
findings focus on plan reconstruction and state estimation.

Cross-cutting findings: Roles, Processes, and Tools

Observations and surveys were collected during the design
simulation across both uplink and downlink sessions to test
whether the design of roles were realistically scoped, and
ensure that the processes and tools were sufficient for oper-
ators to do their jobs. We found that the majority of operators
reported that their roles and the processes within the design
simulation were realistically scoped. However, given the
scaled-down version of the design simulation as compared
to real operations, the autonomy engineer noted that “on a
sufficiently complex mission with more complex plans, just
understanding what the autonomous scheduler/planner did
and why would be enough work for one person, with tun-
ing/assessing the image-processing algorithms (cloud/plume
detectors) as a job for a second person.”

Within the scale of the design simulation, the tool set was
sufficient for operators to perform the jobs. One operator
reported: “I found the tools to be adequate and intuitive. I
was able to do my ‘normal job’ with next to no training which
I think is a huge accomplishment!”

Beyond the scope of the design simulation, our team noted
that additional work should be done to identify what tools
and processes may be needed, if any, by the uplink team
to address the continuously evolving probable outcomes of
the spacecraft state, which evolve as additional information
is received and processed by downlink operators.

To continue evaluating the benefit of these tools in real
autonomous spacecraft operations, we recommend additional
work be done to increase the breadth of use cases that
operators perform, by giving them enough detail in the
resource timeline projection to evaluate planning impacts
beyond the upcoming flyby. We also recommend that the
tools incorporate more granular details, such as instrument-
and subsystem-specific effects and constraints in the Science
Planning tool.

Uplink findings: Intent Capture

To test the effectiveness of the Intent Capture tools, including
the Metrics and Science Planning tool suite for scientists and
mission planners, and the Task Network editor for engineers,
we sought to determine whether the tools fit within operators’
mental models, whether the tools were sufficient for opera-
tors to express their planning intent, and whether the tools
supported negotiations in the operations process.

Based on surveys completed by participants, we found that
the majority of participants found the concepts introduced in
the tools to be similar to ones that they had experienced on
other missions – an encouraging result which suggests that
the tools are a good match for the operators’ mental models.
Based on this finding, we infer that the Intent Capture tools
contain enough similarities to existing operations paradigms
to support user adoption of the parts of the tools that are
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new and innovative within autonomous spacecraft operations.
However, during the design simulation, we observed that
scientists did not use the tools to explore opportunities to
optimize science return without guidance from the facilita-
tors. In contrast, engineers sought out opportunities to use on-
board autonomy to maximize engineering and science tasks,
and even requested additional features such as data downlink
management modeling to pursue further optimization.

When surveyed as to whether their needs were reflected in
the science planning tool and in task network, 100% of
participants replied in agreement. However, given the limi-
tations of the design simulation, it was not possible to re-run
simulations and explicitly assess the impact of changes to the
task network, a key functionality of the proposed workflow;
this was noted as a limitation by some of the participants,
who would have liked to fully evaluate the plan based on their
proposed changes to the task network.

The Metrics tool, coupled with predictions of the likelihood
of mission success, was observed and reported as effectively
supporting negotiations among scientists in cases where sci-
entists had to decide which science measurement should take
priority. One scientist noted that “The modeling was useful
[in that] if you make a decision and set a new goal, [you will
see] how much it advances or doesn’t advance the science
objectives.” Several participants noted that they would have
liked to see the simulated impacts of the proposed updates
as soon as they made changes, a feature that is planned
but was not available in the limited prototype used during
the design simulation. Since the design simulation scenario
did not require engineers to negotiate resources, no data
was collected on the usefulness of the Task Network tool in
negotiating resources.

To improve upon the success of the Intent Capture tools,
we recommend follow-up user research sessions be done
with scientists to identify opportunities to communicate the
benefits and methods for optimizing science return through
on-board autonomy.

Within the entire suite of Intent Capture tools, we recommend
ongoing testing with increasingly realistic use cases to ensure
that the tools can support the majority of planning use cases.
Additionally, we recommend ongoing user sessions in which
interactive simulation results based on user feedback can be
delivered within the duration of the planning session.

Uplink findings: Outcome Prediction

To test the effectiveness of the proposed design, we sought to
determine whether the Variability tool, Outcome Prediction
tool, and Summary tool fit within operators’ mental mod-
els, helped users come to a conclusion about why different
outcomes could occur onboard the spacecraft, and supported
decision-making in uplink planning.

Observations collected during the design simulation con-
firmed that the designs’ constructs, such as prediction clus-
tering and variability inputs, fit within the operators’ mental
model. One example of this was seen when the mission plan-
ner used prediction outcomes to search for possible “show-
stoppers” in the most likely plan cluster (i.e., search for
problems where the team would unequivocally decide not
to uplink the task network as-is, for example due to failure
to schedule important tasks, planning behavior deviating
substantially from expectations, or no progress towards ob-
jectives), and then reviewed science gains and losses in terms
of tasks executed and progress in other outcome clusters.

In another example, the autonomy engineer used outcomes
prediction to identify missing precedence constraints and
revise the task network accordingly: specifically, a missing
ordering constraint that required a slewing task to occur
before collecting imaging data was identified and added to
the task network. Finally, operators demonstrated a requisite
understanding of the tools and their purpose during one up-
link group session, where the majority of the time was spent
discussing the relationship between outcomes and variability
inputs.

It was also observed that, with limited training, participants
used the Outcome Prediction tool to inform the majority of
the planning process. Across sessions, the autonomy engi-
neer identified improper task constraints based on predicted
outcomes during initial planning. In uplink, the team used
outcome prediction to frame discussion, and the downlink
team used output from the tool to identify possible anomalies.

With on-board autonomy, operators will likely experience in-
creased uncertainty concerning what will happen on-board as
compared to current missions, in which command sequences
are generated and uplinked from the ground. Despite this,
operators reported high confidence in predicting what the
spacecraft would do. Specifically, half reported that they were
80% to 100% confident in what would happen on-board, with
the other half reporting at 60 - 79% confidence. The majority
of the participants reported that they found that prediction
clustering in the Outcome Prediction tool increased their
confidence in what would happen onboard.

Participants’ confidence in the design of the Outcome Pre-
diction tool was demonstrated in their use of it to evaluate,
discuss, and make decisions about different planning options.
For example, the Mission Planner reported that they used
Outcome Prediction to “see if there were any obvious out-
liers or something that disqualifies this seemingly best-case
scenario”, and inspected lower-probability outcomes to see
what additional science goals could be met.

Feedback on the design included multiple requests for visu-
alizations that indicate whether environmental or variability
inputs impacted the outcome prediction clusters. We also
observed during uplink processes that operators spent an inor-
dinate amount of time discussing low-probability outcomes,
which we noted could have negative effects on the overall
workflow.

In addition, it was noted that Outcome Prediction contributed
significantly to downlink engineers’ analysis of what hap-
pened on-board the spacecraft, in comparison to what was
likely to happen. Across all downlink sessions, discussions
focused on mismatches between predicted outcome and ac-
tuals, with operators correctly identifying that, in one orbit,
there was a mismatch between the expected number of NAC
imaging activities in the prediction compared to the actual
observation window.

The Outcome Prediction tool proved highly valuable in help-
ing the operations team understand the range of outcomes
that could result from variations in the model or environment.
Recommendations for future work include designing a way
for users to identify whether environmental or variability
inputs have greater impact on a specific outcome, and investi-
gating the impact of operators’ time spent on low probability
outcomes.
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Downlink findings: Plan Reconstruction

To test the performance of the Plan Reconstruction tool, we
assessed how well the Plan Reconstruction tool helped op-
erators correctly interpret what was autonomously detected,
planned, and executed by the spacecraft, and whether they
could determine what informed the outcome of the plan.

Based on the data we collected, we conclude that the Plan
Reconstruction feature helped operators assess what was
executed on-board the spacecraft, and identify the conditions
that informed the on-board planner to generate the plan.
Specifically, we observed operators using the tool to identify
whether the spacecraft performed as expected. One engineer
reported that “The plan reconstruction made it very clear
what was scheduled on-board and at what time. I was able to
clearly confirm whether each of the instruments performed
all of their tasks required to make detections and obser-
vations.” Additional design features that called operators’
attention to incomplete tasks were also noted positively, with
one operator reporting that “Seeing the goals at the top of
the plan reconstruction provided further confidence that the
instruments behaved nominally. Seeing a warning indicator
at the Plume B observation made it obvious that the NAC /
SMS were not able to make the observations at Plume B. In
being able to check that the tasks ‘slew to Triton’ and ‘detect
plumes’ executed nominally, I was able to rule out that this
issue was a result of failure during the previous subtasks.”

While the data pointed to the usefulness of the Plan Recon-
struction feature in determining the actions of the spacecraft,
we also noted that design simulation participants referred to
their knowledge of the last uplinked model to contextualize
the plan that was received. Due to the fact that participants
in the design simulations acted as both uplink and downlink
engineers, and therefore were aware of the current state of the
task network model, we recommend that further research be
done to evaluate the benefit of situational awareness of the
model on the effectiveness of the playback feature, and on
any additional state estimation features used to determine the
state of the spacecraft.

Additionally, we recommend that further work be done to ex-
plore how the current design would scale to a more complex
task network model with increased dependencies between
goals and resources. Specifically, we are interested to learn
which information will become most valuable to operators
in their assessment of the on-board planner and autonomous
detectors.

Downlink findings: State Estimation

To test the success of the proposed state estimation tools and
interfaces, we observed and surveyed whether operators used
them to accurately and confidently estimate the state of the
spacecraft.

We found that, in cases where only partial data was available,
that operators found state estimation to be valuable. One
engineer reported that “For the times where telemetry was
not available, the uncertainty visualization helped me to un-
derstand the possible state of the spacecraft resource. Instead
of being left completely in the dark or needing to make rough
estimates on my own, the state estimation provided me with
possible states for that resource usage based on the partial
data that was able to be downlinked. This analysis provided
me with confidence that the issue of the missing NAC image
and SMS measurements was not likely to be due to on-board
storage reaching capacity or battery usage being drained too

quickly.”

However, in cases where data was not missing, we noted
that availability of the estimation tools did not dramatically
alter the operators’ analysis process. The process relied on
comparing predicts to raw spacecraft measurements to decide
the next step in their analysis. For example, when viewing the
estimated resource data, one downlink engineer asked to see
what data was missing to inform where a problem might exist.

We note that operators’ use of the state estimation features
may have been impacted by insufficient exposure to the new
tools prior to the design simulation. With just 30 minutes
to review the latest telemetry and assess the state of their
system, operators performed their analysis as efficiently as
possible, possibly prioritizing tools and techniques that were
familiar to them. We recommend that future user testing be
done with additional training on the state estimation tools, to
better reflect the operators’ deep familiarity with their tools
in actual operations.

To explore opportunities for increasing the usefulness of the
state estimation features within downlink operators’ primary
analysis workflow, we also recommend additional user re-
search and iterative design sessions with operators.

7. CONCLUSIONS
We study the problem of operations for autonomous space-
craft: that is, what workflows and tools will be necessary to
enable operators of future autonomous missions to interact
with on-board autonomy, with a focus on on-board planning
and scheduling. We designed a set of user interfaces and
algorithmic tools to address this challenge, and assessed their
effectiveness through a design simulation with JPL operators
and scientists. The design simulation largely confirmed that
the proposed approach is effective in capturing uplink oper-
ators’ intent and allowing downlink operators to understand
the spacecraft’s decisions and assess its state, effectively ad-
dressing the problem of operations of autonomous spacecraft.
A number of recommendations for improvements to the tools
were also gathered, and will be implemented in future work.

In addition, a number of directions for future research are of
interest.

First, we will continue the implementation and maturation
of the proposed tools, and their integration with existing
frameworks used for mission operations such as AMPCS.

Second, we plan to assess the scalability of the proposed tools
to larger datasets. A typical mission on the scale of Mars
2020 or Europa Clipper has tens of thousands of different
data types that are used in downlink analysis, including tens
of thousands of telemetry channels, thousands of predicted
channels, tens of thousands of flight software parameters, and
thousands to tens of thousands of EVRs. We plan to ensure
that both user interfaces and algorithms are able to scale up
to the needs of flagship-class missions.

Third, we will continue exploring the role of state estimation
algorithms in the downlink analysis process. State estimation
holds promise to help bridge the gap between unorganized
EVRs and a full representation of the spacecraft state (or even
a representation of spacecraft state from the perspective of
the on-board planner); however, additional work is required
to make sure that state estimation is provided to operators at
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junctures when it is most useful.

Fourth, we plan to propose standards for onboard data types
(e.g., the format of specific autonomy-related EVRs, or
common representations of the spacecraft’s state) to make it
possible to design general-purpose ground analysis tools that
can be used across missions, without requiring major adap-
tations for each subsequent project. This effort will likely
include both collections of EVRs and dedicated autonomy
engineering data products.

Finally, we plan to pursue infusion of the proposed tools in
future autonomous technology demonstration missions (start-
ing with integration and testing operations and operational
readiness tests), in order to raise the technology readiness
level of the proposed framework, identify additional use
cases, and ensure that the proposed approach is fully able to
support operators of future autonomous spacecraft.
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