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Intermodal Autonomous Mobility-on-Demand
Mauro Salazar1,2, Nicolas Lanzetti1,2, Federico Rossi2, Maximilian Schiffer2,3, and Marco Pavone2

Abstract—In this paper we study models and coordination poli-
cies for intermodal Autonomous Mobility-on-Demand (AMoD),
wherein a fleet of self-driving vehicles provides on-demand
mobility jointly with public transit. Specifically, we first present
a network flow model for intermodal AMoD, where we capture
the coupling between AMoD and public transit and the goal is
to maximize social welfare. Second, leveraging such a model,
we design a pricing and tolling scheme that allows the system
to recover a social optimum under the assumption of a perfect
market with selfish agents. Third, we present real-world case
studies for the transportation networks of New York City and
Berlin, which allow us to quantify the general benefits of
intermodal AMoD, as well as the societal impact of different
vehicles. In particular, we show that vehicle size and powertrain
type heavily affect intermodal routing decisions, hence system
efficiency. Our studies reveal that the cooperation between AMoD
fleets and public transit can yield significant benefits compared
to an AMoD system operating in isolation, whilst our proposed
tolling policies appear to be in line with recent discussions for
the case of New York City.

I. INTRODUCTION

TRAFFIC congestion is soaring all around the world. Besides
mere discomfort for passengers, congestion causes severe

economic and environmental harm, e.g., due to the loss of
working hours and pollutant emissions such as CO2, partic-
ulate matter, and NOx [1]. In 2013, traffic congestion cost
U.S. citizens 124 Billion USD [2]. Notably, transportation
remains one of a few sectors in which emissions are still
increasing [3]. Governments and municipalities are struggling
to find sustainable ways of transportation that can match
mobility needs and reduce environmental harm as well as
congestion.

To achieve sustainable modes of transportation, new mobil-
ity concepts and technology changes are necessary. However,
the potential to realize such concepts in urban environments
is limited, since upgrades to the available infrastructures (e.g.,
roads and subway lines) and their capacity are often extremely
costly and require decades-long planning timelines. Thus,
mobility concepts that use the existing infrastructure in a
more efficient way are particularly attractive. In this course,
mobility-on-demand services appear to be a most promising
solution. Herein, two main concepts exist. On the one hand,
free floating car sharing systems strive to reduce the total
number of private vehicles in city centers. However, these
systems offer limited flexibility and are generally characterized
by low adoption rates that result from low vehicle availabilities
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Fig. 1. The I-AMoD network consists of a road digraph, a walking digraph
and a public transportation digraph. The colored dots denote intersections or
stops and the black arrows represent road links, pedestrian pathways or public
transit arcs. The grey dotted lines denote geographically close nodes while
the grey arrows are the mode-switching arcs connecting them.

due to the difficulty of rebalancing empty vehicles to counter
asymmetric customer demand [4], [5]. On the other hand, ride-
hailing systems aim to enhance and extend the service of taxi
fleets. However, current studies show that ride-hailing services
can worsen traffic congestion significantly due to the induced
demand and the vehicle-miles traveled by empty vehicles.
Moreover, additional demand may also result from a shift in
the modal share as ride-hailing operators offer a low cost point-
to-point connection. Indeed, recent studies for the Manhattan
area revealed the massive magnitude of such effects: Between
2013 and 2018, the number of for-hire vehicles exploded from
47,000 to 103,000, 68,000 of which are employed for ride-
hailing services. Due to this increase, the average traffic speed
dropped to 4.7 mph, which equals a brisk walk [6].

Autonomous Mobility-on-Demand (AMoD) systems hold
promise as a future mobility concept in urban environments.
They comprise a fleet of robotic, self-driving vehicles that
transport passengers between their origins and destinations.
A central operator runs such systems by assigning passenger
requests to vehicles and computing rebalancing routes for the
unassigned empty vehicles, in order to re-align their geo-
graphical distribution with demand for transportation. Thus, an
AMoD system can replace a conventional taxi, car sharing, or
ride-hailing fleet, while offering several advantages compared
to the previously discussed concepts: First, no relocation costs
for drivers arise; second, due to continuous rebalancing, much
higher vehicle utilization rates can be achieved; third, the
centralized control of the complete fleet allows for more op-
erational flexibility and efficiency compared to ride-hailing or
taxi fleets where a central operator can suggest, but not directly
control, vehicle routes. This enables the operator to adopt
global fleet-wide routing strategies to mitigate congestion.



2

However, despite these benefits, AMoD systems operating
in isolation might still worsen congestion due to shifts in
the modal share. To secure sustainable and congestion-free
urban mobility, an AMoD system should rather interact with
and complement existing mass transit options. Against this
backdrop, our study develops modeling and optimization tools
to assess the benefits of an intermodal transportation system
that combines public transit with AMoD (Fig. 1).

Related literature: Our work contributes to three different
research streams, namely: AMoD systems, congestion pricing,
and multimodal passenger transport, which we review in the
following.

A number of approaches to characterize and control AMoD
systems in isolation are available, ranging from queuing-
theoretical models [7]–[9] to simulation-based models [10]–
[12] and multi-commodity network flow models [13]–[15].
Queueing-theoretical models capture the stochasticity of the
customer arrival process and are amenable to efficient control
synthesis. However, their complex structure makes it difficult
to capture the interaction with other modes of transportation.
Simulation-based models capture transportation systems with
very high fidelity, incorporating complex choice models and
microscopic interactions, but are generally not amenable to
efficient optimization. Network flow models are amenable to
efficient optimization and allow for the inclusion of a variety of
complex constraints. Accordingly, they have seen wide use in
problems ranging from control of AMoD systems in congested
road networks [13], [16], [17], to cooperative control of AMoD
systems and the electric power network [18], and control of
human-operated MoD systems [19].

Congestion pricing in general has been widely investigated,
and a body of theoretical work [20]–[23] and experimental
results [24]–[26] are available. However, only few approaches
focus on pricing in the context of AMoD: Specifically, [27]
focuses on congestion pricing for self-driving vehicles by
incentivizing socially and environmentally aware travel modes,
while [28] proposes pricing schemes to foster the use of
AMoD systems. However, these studies comprise logit mod-
eling approaches and rely on agent-based simulations that
assess the performance of pre-determined intermodal AMoD
(I-AMoD) routing policies. In contrast, our optimization-based
approach identifies the best achievable performance of an
I-AMoD system and enables the synthesis of policies that steer
a system towards such an optimum.

Literature on intermodal passenger transportation including
Mobility-on-Demand (MoD) and AMoD is still sparse. First,
studies on the interplay between AMoD and public trans-
portation exist, focusing either on fluidic [29] or simulation-
based [11], [30], [31] models. However, these studies focus
on the analysis of specific scenarios, as opposed to the
optimization of joint control policies for AMoD systems and
public transit. In general, to the best of the authors’ knowledge,
only descriptive analyses of intermodal passenger transport
including MoD exist [32].

In summary, some optimization approaches and control
policies for AMoD systems are available. These approaches,
however, do not capture the interaction between AMoD and
public transit. Focusing on pricing schemes, existing studies

address individual externalities (e.g., congestion), but no study
captures the interplay between multiple externalities arising
from the synchronization of different modes of transportation.
To date, there exist no optimization frameworks that capture
optimal coordination policies for I-AMoD systems whilst
assessing their achievable performance.

Statement of contributions: The goal of this paper is to
introduce a mesoscopic optimization approach for I-AMoD
systems. Specifically, the contribution of this paper is fourfold:
First, we develop a multi-commodity network flow optimiza-
tion model that captures the joint operations of AMoD systems
and public transit. In our model, the objective is to maximize
the social welfare, i.e., to minimize the customers’ travel time
together with the operational costs of different transportation
modes. Herein, we also consider energy consumption, pollu-
tion, and congestion effects. Second, we propose a pricing and
tolling scheme that helps to realize the social optimum in the
presence of selfish customers and AMoD operators. Third, we
present real-world case studies for New York City (NYC) and
Berlin accounting for the impact of the urban transportation
network and of the AMoD vehicles’ characteristics on the
achievable societal costs, including travel times and emissions.
Fourth, we derive managerial insights on the benefits of
I-AMoD systems: Our results show that an I-AMoD system
can significantly reduce travel times, pollutant emissions, total
number of cars, and overall costs compared to an AMoD
system operating in isolation. Interestingly, our pricing and
tolling scheme is aligned with recently proposed congestion
surcharges for ride-hailing vehicles [33].

A preliminary version of this paper was presented at the
2018 Intelligent Transportation Systems Conference [34]. In
this revised and extended version, we broaden the discussion
of the literature, detail models for travel time, road congestion,
and energy consumption, present a rigorous optimality proof
for the proposed pricing scheme, and discuss new numerical
results for the central neighborhoods of NYC and Berlin.

Organization: The remainder of this paper is structured as
follows: In Section II we present a flow optimization model
for I-AMoD. Section III derives a pricing and tolling scheme
to steer self-interested agents towards a social optimum. Sec-
tion IV presents case studies for NYC and Berlin, which are
complementary in terms of spatial displacement, road network
structure, and public transit. Finally, Section V concludes the
paper with a short summary and an outlook on future research.

II. NETWORK FLOW MODEL FOR I-AMOD

This section presents a network flow optimization approach
for intermodal AMoD. In particular, we consider i) the as-
signment of customer requests to transport flows, ii) different
modes of transportation, iii) road capacity limits, iv) vehicle
based energy consumption models for the AMoD fleet, and
v) rebalancing operations to reposition empty vehicles accord-
ing to mobility demand. Assuming a centrally controlled sys-
tem, we introduce a network flow model in Section II-A, and
discuss the representation of travel time and road congestion
in Section II-B. Section II-C presents our energy consumption
model. Section II-D details the I-AMoD optimization problem
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and its objective. Finally, Section II-E discusses our modeling
assumptions. Readers not familiar with basic elements from
graph theory are referred to Appendix B.

A. Multi-commodity Flow Model

We model the transportation system and its different trans-
portation modes on a digraph G = (V ,A ) as shown in
Fig. 1. It consists of a set of nodes V and a set of arcs
A ⊆V ×V , containing a road network layer GR =(VR,AR), a
public transportation layer GP = (VP,AP), and a walking layer
GW = (VW,AW). The road network consists of intersections
i ∈ VR and road links (i, j)∈AR. We model public transporta-
tion, i.e., tram and subway lines as distinct trees, using a set
of station nodes i ∈ VP and a set of line segments (i, j) ∈ AP.
The walking network comprises walkable streets (i, j) ∈ AW
between intersections i∈VW. Finally, we model the possibility
of customers switching transportation modes (e.g., exiting
the subway or hailing an AMoD ride) by connecting the
pedestrian layer to the road and public transportation layers
with a set of mode-switching arcs AC ⊆ VR × VW ∪ VW ×
VR ∪VP ×VW ∪VW ×VP, whereby VR ∩VP = /0. Accordingly,
V = VW ∪VR ∪VP and A = AW ∪AR ∪AP ∪AC hold. Given
the structural properties of road and walking networks in urban
environments, we make the following assumption without loss
of generality:

Assumption 1. The graphs G , GR, and GW are strongly
connected.

Traversing an arc (i, j) of length si j takes on average ti j time
units. For mode-switching arcs, ti j denotes the time needed to
switch between two means of transportation. As in [13], [19],
we represent travel requests as follows:

Definition II.1 (Requests). A request r is a triple (o,d,α) ∈
V ×V ×R+, given by its origin node o ∈ V , its destination
node d ∈ V , and its request rate α > 0, representing how
many customers want to travel from node o to node d per unit
time. We denote a set of M travel requests by R := {rm}m∈M ,
where M := {1, . . . ,M}.

Assumption 2. All requests appear on the walking digraph,
i.e., om,dm ∈ VW, ∀m ∈ M .

Considering the different transportation modes, fm (i, j) de-
notes the flow (i.e., the number of customers per unit time)
traversing arc (i, j) ∈ A for a certain travel request m, allowing
for request rates of the same demand to be split to different
routes. To account for rebalancing flows of AMoD vehicles
between a customer’s drop-off and the next customer’s pick-
up, f0 (i, j) denotes the flow of empty vehicles on road arcs
(i, j) ∈ AR. For the customers and rebalancing flows it holds
that

∑
i:(i, j)∈A

fm(i, j)+1 j=om ·αm = ∑
k:( j,k)∈A

fm( j,k)+1 j=dm ·αm

∀m ∈ M , j ∈ V (1a)

∑
i:(i, j)∈AR

(
f0 (i, j)+∑

m∈M

fm(i, j)

)
= ∑

k:( j,k)∈AR

(
f0 ( j,k)+∑

m∈M

fm( j,k)

)
∀ j ∈ VR (1b)

fm (i, j)≥ 0 ∀m ∈ M , (i, j) ∈ A (1c)
f0 (i, j)≥ 0 ∀(i, j) ∈ AR, (1d)

where 1 j=x is the boolean indicator function. Specifically,
we preserve flow conservation for every transportation de-
mand in (1a). Analogously, we guarantee flow conservation
for vehicles on every road node with (1b) and ensure non-
negativity of flows by (1c) and (1d). Since conservation of
customers follows directly from (1a), rebalancing is ensured
to match the demand due to the conservation of vehicles
constraint (1b) [13].

B. Travel Time and Road Congestion

The modeling of travel times and road congestion heavily
affects the tractability of our solution approach but also the
accuracy of its results. We choose a modeling approach that
is a good trade-off between accuracy and tractability for
mesoscopic analysis.

We assume a constant walking speed for pedestrian arcs,
infer travel times for public transit from the public transit
schedules, and use constant average values for mode-switching
arcs. On roads, congestion strongly influences travel times. For
network flow models it is common practice to scale the nomi-
nal travel time at free-flow speed with a volume delay function.
In this paper, we use the Bureau of Public Roads (BPR)
function [35], which has the form FBPR(x) = 1+0.15 ·x4, with
x representing the ratio between the nominal capacity of the
road and the vehicles’ flow traversing it. With this model, the
travel time for the exogenous traffic flow uR

i j in the absence of
AMoD vehicles on a road arc (i, j) ∈ AR results to

ti j = tN
i j ·FBPR

(
uR

i j/cR
i j
)
, (2)

with the travel time at free-flow speed denoted as tN
i j and the

nominal road capacity cR
i j depending on the free-flow speed,

the number of lanes, and the space occupied by one vehicle.
We model the travel time at free-flow speed on urban road

arcs with the following rationale: We assume a car to traverse
an arc starting from idling, accelerating with a maximum
acceleration amax until reaching the free-flow speed vmax,i j,
driving at this speed until almost the end of the arc, and
finally decelerating with maximum deceleration −amax, in
order to stop at the end of the arc. Capturing acceleration
and deceleration in this way allows to account for the driving
behaviour also in between crossroads. Consider a road arc with
total length si j. The car reaches the maximum velocity at time
t∗i j = vmax,i j/amax such that, assuming the total travel time to
be larger than the total acceleration and deceleration time, the
total travel distance on the road arc must satisfy

si j =−
v2

max,i j

amax
+ vmax,i j · tN

i j ∀(i, j) ∈ AR,

yielding the free-flow travel time on road arcs

tN
i j =

vmax,i j

amax
+

si j

vmax,i j
∀(i, j) ∈ AR. (3)

We compare our model with the guidelines provided by the
Transportation Research Board (TRB) [36, Ch. 15] in Fig. 2,
showing that the travel time computed with our model for
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Fig. 2. Relative free-flow travel time difference from the TRB model for road
arcs with different length and free-flow speed.

different values of link length si j and free-flow speed vmax,i j
is in good agreement with the TRB guidelines.

In order to limit the endogenous impact of the AMoD
vehicles on road traffic and travel time, we impose a maximum
capacity threshold cR,th

i j as

f0 (i, j)+∑
m∈M

fm (i, j)+uR
i j ≤ cR,th

i j ∀(i, j) ∈ AR. (4)

Specifically, we choose the capacity threshold so that the
presence of endogenous AMoD traffic does not increase travel
time by more than ∆rtime · tN

i j . That is, for each arc (i, j) ∈ AR

the capacity threshold cR,th
i j satisfies

ti j +∆rtime · tN
i j = tN

i j ·FBPR

(
cR,th

i j /cR
i j

)
, (5)

which combined with Eq. (2) yields

cR,th
i j =

∆rtime

0.15
+

(
uR

i j

cR
i j

)4
 1

4

· cR
i j ∀(i, j) ∈ AR. (6)

Choosing a sufficiently small ∆rtime, the total travel time
results from the combination of exogenous and endogenous
vehicle flows and can be approximated with its upper bound
at full capacity as

ti j = tN
i j ·FBPR

(
cR,th

i j /cR
i j

)
∀(i, j) ∈ AR. (7)

C. Energy Consumption of AMoD Vehicles
We compute the energy consumption for AMoD vehicles

by applying the general approach from [37] to the New
York City urban driving cycle [38]. To account for differ-
ent mean velocities, we multiply the time and divide the
velocity trajectory of the driving cycle by the scaling factor
rscale =

ti j
si j

· scycle
tcycle

, where scycle and tcycle represent the nominal
spatial and temporal length of the driving cycle. Assuming the
vehicles to be powered either by gasoline engines with start
and stop capabilities or by electrical motors, we compute the
energy consumption E in terms of fuel energy Ef or electrical
battery energy Eb, respectively, and assign it to the road arc
(i, j) ∈ AR as ei j = E · si j/scycle.

For a driving cycle consisting of a velocity, an acceleration
and a road inclination trajectory over time

(
v(t),a(t),ϑ(t)

)
,

the requested power at the wheels is

Preq(t) =
(

mv ·a(t)+mv ·g · sin
(
ϑ(t)

)
+ cr ·mv ·g · cos

(
ϑ(t)

)
+

ρair

2
· cd ·Af · v(t)2

)
· v(t),

(8)

where the first term in brackets accounts for the acceleration of
the vehicle, the second one is the gravitational force, the third
one the rolling friction force, and the last one the aerodynamic
drag. Hereby, mv is the mass of the car, g the gravitational
acceleration, cr the rolling friction coefficient, ρair the air
density, cd the aerodynamic drag coefficient, and Af the frontal
area of the car. Most of these parameters vary depending on
the vehicle type. Assuming a constant final drive efficiency
ηfd, the power provided by the propulsion system Pp is

Pp =

{ 1
ηfd

·Preq if Preq ≥ 0
ηfd ·Preq +Pbrk if Preq < 0,

(9)

where Pbrk ≥ 0 is the braking power exerted by the hydraulic
brakes. We model the power provided to the auxiliaries (e.g.,
heating, ventilation, air-conditioning, ECU, hydraulic brakes,
etc.) with a vehicle-size-dependent constant power Paux. Fi-
nally, we compute the energy consumption of Internal Com-
bustion Engine Vehicle (ICEV) and Battery Electric Vehicle
(BEV) as follows:

1) ICEV: In this case, the car is powered by an internal
combustion engine which power needs to match the propulsive
power defined in (9), i.e., Pe =Pp. We model the engine using a
power Willans approximation [39] as Pe = ηe ·Pf−Pe,0, where
Pe is the engine power, ηe the internal efficiency of the engine,
Pf the fuel power, and Pe,0 the engine friction power. Assuming
start and stop capabilities, the fuel power is

Pf =

{
0 if Preq ≤ 0
1

ηe
·
(

Pe +Pe,0 +
ton
ttot

·Paux

)
if Preq > 0, (10)

where ttot is the length of the driving cycle and ton captures
the amount of time the ICE is on as

∫ ttot
0 1Preq(t)>0 dt. The fuel

energy consumption is then

Ef =
∫ ttot

0
Pf(t)dt. (11)

2) BEV: In this case, the car is powered solely by an
electrical motor such that the mechanical power needs to
match the propulsive power (9) as Pm = Pp. We model the
efficiency of the electric motor in a piecewise affine manner,
to distinguish motor and generator operation. Specifically, the
electrical motor power Pel is related to the mechanical motor
power as

Pel =

{ 1
ηm

·Pm if Pm ≥ 0
ηg ·Pm if Pm < 0,

(12)

where ηm and ηg represent the electrical motor and generator
efficiency, respectively. The power delivered by the battery Pb
is the sum of the electrical motor power and the auxiliary
power as Pb = Pel +Paux. We model the internal power drawn
from the battery Pi in a piecewise affine manner, distinguishing
between battery charge and discharge. In particular, it holds
that

Pi =

{ 1
ηdis

·Pb if Pb ≥ 0
ηchg ·Pb if Pb < 0,

(13)

where ηchg and ηdis represent the battery charging and dis-
charging efficiency, respectively. Finally, the electrical energy
consumption is

Eb =
∫ ttot

0
Pi(t)dt. (14)
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D. I-AMoD Objective and Optimization Problem
Our goal is to maximize the social welfare by minimizing

the customers’ travel time together with the operational costs
incurred by the I-AMoD system. We define commuting costs
that depend on the customers’ value of time and on operational
costs for the AMoD fleet and the public transportation. We
assume customers to have the same value of time VT; we
define the costs for the AMoD fleet as mileage-dependent costs
VD,R to account for maintenance, depreciation, and the AMoD
operators’ normal profits (i.e., the profits which compensate
them for their risk and opportunity cost [40]), as well as energy
costs VE to account for fuel or electricity consumption. The
public transportation network has major fixed costs that can
be arbitrarily included in the problem as constant terms in
the objective without changing its minimizer. Since in this
paper we consider how to optimize the usage of the existing
infrastructure, we cumulate all operational costs due to usage
of the public transportation network as VD,P. In future research
it would be of interest to include fixed costs to study the
cost-effectiveness of the existing infrastructure and evaluate
possible upgrades. However, this is beyond the scope of this
paper. Finally, we add a quadratic regularization term with a
very small weight VQ. While this term does not noticeably
influence the total cost, it does ensure strict convexity and
thus a unique solution for the problem — a key property that
enables the design of a socially-optimal pricing and tolling
scheme in Section III. The social cost is then

JM
(
{ fm (·, ·)}m, f0 (·, ·)

)
=VT ·∑

m∈M ,(i, j)∈A

ti j · fm (i, j)

+∑
(i, j)∈AR

(VD,R · si j +VE · ei j) ·

(
f0 (i, j)+∑

m∈M

fm (i, j)

)
+VD,P ·∑

(i, j)∈AP

si j ·∑
m∈M

fm (i, j)

+VQ ·

(
∑

m∈M
∑

(i, j)∈A

fm ( j, j)2 + ∑
(i, j)∈AR

f0 (i, j)2

)
.

(15)

We state the I-AMoD optimization problem as follows:

Problem 1 (I-AMoD Optimization Problem). Given the set
of transportation demands R, the optimal customer flows
{ fm (·, ·)}m and rebalancing flows f0 (·, ·) result from

min
{ fm(·,·)}m, f0(·,·)

JM
(
{ fm (·, ·)}m, f0 (·, ·)

)
s.t. Eq. (1), Eq. (4), Eq. (15).

(16)

For ease of notation, we reformulate Problem 1 in matrix
form. With a slight abuse of notation, let a denote the arc label
of an arbitrary arc (i, j). We define
[xR,m]a := fm (i, j) , [x0]a := f0 (i, j) ,
[cR]a :=VT · ti j +VD,R · si j +VE · ei j, [c0]a :=VD,R · si j +VE · ei j,

[hR]a := cR,th
i j −uR

i j ∀(i, j) ∈ AR (17a)

[xW,m]a := fm (i, j) , [cW]a :=VT · ti j

∀(i, j) ∈ AW (17b)
[xP,m]a := fm (i, j) , [cP]a :=VT · ti j +VD,P · si j

∀(i, j) ∈ AP (17c)
[xC,m]a := fm (i, j) , [cC]a :=VT · ti j

∀(i, j) ∈ AC, (17d)

and denote by BR ∈ {−1,0,1}|VR|×|AR| the inci-
dence matrix of the road graph GR. Finally, we
define xm := (xR,m,xW,m,xP,m,xC,m) and denote by
B ∈ {−1,0,1}|V |×|A | the incidence matrix of the full
graph G . With this notation, we reformulate Problem 1 using
the incidence matrix to express flow conservation constraints.

Problem 2 (I-AMoD Optimization Problem Revisited). Given
the set of transportation demands R, the optimal customer
flows {xm}m and rebalancing flows x0 result from the quadratic
optimization problem

min
{xR,m,xW,m,

xP,m,xC,m}m,x0

∑
i∈M

VQ · x⊤R,mxR,m + c⊤R xR,m +VQ·x⊤W,mxW,m + c⊤WxW,m

+VQ · x⊤P,mxP,m + c⊤P xP,m +VQ · x⊤C,mxC,m + c⊤C xC,m

+VQ · x⊤0 x0 + c⊤0 x0 (18a)
s.t. Bxm = bm ∀m ∈ M (18b)

BR

(
∑

m∈M

xR,m + x0

)
= 0 (18c)

∑
m∈M

xR,m + x0 ≤ hR (18d)

xm ≥ 0, x0 ≥ 0 ∀m ∈ M , (18e)

where [bm]i = −αm for the origin node, [bm]i = +αm for the
destination node, and [bm]i = 0 otherwise. The linear terms
in (18a) account for the cost incurred when travelling on the
corresponding digraph by customers and rebalancing vehicles.
The quadratic terms act as regularizers. Conservation of
customers and vehicles is guaranteed by (18b) and (18c)
respectively. Constraint (18d) captures road congestion.

Lemma II.2. Problem 1 and Problem 2 are solution equiva-
lent, i.e., the optimal solution of Problem 1 denotes the optimal
solution of Problem 2 and vice versa.

Proof. Substituting cost vectors and variables in (18a) directly
shows the equivalence. With

[Bxm] j = ∑
i:(i, j)∈A

fm (i, j)− ∑
k:( j,k)∈A

fm ( j,k) =


+αm if j = dm

−αm if j = om

0 else,

(1a) is equivalent to (18b) and (18c)–(18e) follow analogously.

Lemma II.3. Problem 1 is feasible and has a unique solution.

Proof. Feasibility: The proof is constructive. By Assump-
tion 2, requests originate and end on nodes in the walking
graph. By Assumption 1 the walking graph is strongly con-
nected, hence guaranteeing the existence of a path connecting
any pair of nodes o,d ∈ VW. Also, the capacity of all arcs in
AW is infinite. For each customer request r = (o,d,α) wishing
to travel from node o to node d, select a path p connecting o
to d containing only arcs in the pedestrian graph, and set flows
fm (·, ·) equal to α for all arcs in the path, and zero otherwise.
The resulting flow is a feasible solution. Uniqueness: Solution
uniqueness follows directly from strict convexity, the affinity
of the constraints of Problem 2, and Lemma II.2.
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E. Discussion

A few comments are in order. First, we consider a time-
invariant transportation demand. This assumption is in order if
the requests change slowly compared to the average travel time
of individual trips, as is often observed in densely populated
urban environments [41]. Second, we do not explicitly account
for the stochastic nature of exogenous traffic and of the
customer arrival process. Given the mesoscopic perspective
of our study, this deterministic representation is in order as it
captures such stochastic processes on average [9]. Third, we
allow fractional customer and vehicle flows. We show in Sec-
tion IV-B1, that the resulting accuracy loss is negligible for the
mesoscopic perspective of our study. Moreover, Problem 2 can
be solved in polynomial time with off-the-shelf optimization
algorithms providing global optimality guarantees for the so-
lution found. For real-time applications, randomized sampling
methods can be used to compute integer-valued flows from
fractional flows, yielding near-optimal routes for individual
vehicles and customers [42, Ch. 4], whilst new information can
be accounted for as it is revealed through a receding-horizon
framework. Fourth, we adopt a threshold model to capture
road congestion. On the one hand, such a model allows us to
contain the impact of AMoD vehicles on road traffic, whilst
on the other hand it can be expressed as a linear inequality
constraint. Methods to account for the impact of endogenous
traffic on travel time via volume-delay functions such as the
BPR function [35] have been presented in [17] for the AMoD-
only problem, whereas convex approximations and relaxations
readily applicable to the I-AMoD case can be found in [16].
In this paper, we focus on scenarios where the AMoD traffic
cannot exceedingly impact the road network in order to devise
road tolling schemes that provide these conditions. Choosing
a sufficiently small ∆rtime allows us to use the upper bound
of (7) as an estimate travel time for road arcs. Fifth, we
assume exogenous traffic not to be affected by the endogenous
AMoD vehicle routes. This assumption is also acceptable
for small values of ∆rtime, capturing the fact that vehicles
follow similar routes under similar traffic conditions. We
leave the game-theoretical extension accounting for reactive
exogenous traffic for future investigation. Sixth, in a first
attempt to characterize I-AMoD systems comprising two travel
modes, namely congestion-free public transit and congestion-
affected AMoD, our model focuses on public transportation
means that are not affected by congestion such as rail-based
systems. Nevertheless, our framework can be readily extended
to capture congestion-affected public transportation systems
such as bus-lines by adapting their schedules as a function of
the level of exogenous road congestion, as is done for AMoD
vehicles. Seventh, we allow AMoD vehicles to transport one
customer at a time. Such an assumption is in line with current
trends in mobility-on-demand systems, such as taxis, Lyft
and Uber. The extension to ride-sharing AMoD requires the
adoption of integer-valued flows and time-expansions of the
whole transportation network, resulting in prohibitory trade-
offs between computational times and model accuracy [43].
Finally, for the sake of simplicity, we consider customers
to have identical preferences in terms of value of time and

travel comfort. However, the model proposed in this paper can
be readily extended to capture distinct classes of customers,
each characterized by a different network flow associated with
specific preferences.

III. A PRICING AND TOLLING SCHEME FOR I-AMOD

In Section II, we assume that the objectives of all
stakeholders are aligned with the global objective of maxi-
mizing social welfare. In reality, stakeholders are selfish, i.e.,
customers maximize their private welfare, whilst AMoD fleet
operators maximize their profits. In this section, we propose
a road tolling scheme to align the goals of self-interested
agents with the objective of maximizing social welfare (cf.
Section II-D). Section III-A formally introduces the self-
interested agents participating in the I-AMoD market, while
Section III-B details our road tolling scheme and Section III-C
proves its alignment with the social optimum.

A. Self-interested Agents

We model the I-AMoD market as a perfect market with
three types of agents: The municipal transportation authority,
I-AMoD customers, and AMoD operators. Assuming a perfect
I-AMoD market, neither individual customers nor AMoD
operators can unilaterally influence the transportation prices
which result from the market equilibrium [40].

The municipal transportation authority sets fares in the
subway system and road tolls in the road network aiming at
maximal social welfare. Prices in the public transportation net-
work are set to cover the operational cost of the transportation
system, whereas road tolls can be interpreted as congestion
surcharges. Specifically, the transportation authority sets a fare
pP(i, j) for each arc (i, j) ∈ AP in the public transportation
network and a toll τR(i, j) for each arc (i, j) ∈AR in the road
network.

I-AMoD customers serve their mobility requests m ∈ M
by selecting an intermodal route from their origins to their
destinations. From our mesoscopic perspective, route selection
consists of choosing a commodity flow fm (·, ·) satisfying con-
tinuity as in Eq. (1a). We neglect common user-centric mod-
eling approaches that account for individual cost functions:
In line with current practice [44], we assume that customers
select their routes by using navigation apps which compute
routes by considering an aggregate model of the customers’
preferences. Specifically, we set a customer’s objective as
the maximization of her welfare, defined as the sum of the
travel time multiplied by the value of time VT and the cost
of her trip as the cumulative sum of the fares paid along the
route: pP(i, j) for each traversed arc (i, j) ∈ AP in the public
transportation network, as set by the municipal authority, and
pR(i, j) for each road arc (i, j) ∈ AR traveled with an AMoD
vehicle. Considering a negligible quadratic regularization term
(cf. Eq. 15) for the sake of consistency, a customer’s I-AMoD
navigation app solves the following problem:
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Problem 3 (I-AMoD Customers Optimization Problem).
Given a transportation request rm = (om,dm,αm) ∈ R,
I-AMoD customers’ routes result from

min
fm(·,·)

VT ·∑
(i, j)∈A

ti j · fm (i, j)+VQ ·∑
(i, j)∈A

fm ( j, j)2

+∑
(i, j)∈AR

pR(i, j) · fm (i, j)+∑
(i, j)∈AP

pP(i, j) · fm (i, j)

s.t. Eq. (1a), Eq. (1c), (19)

The first term in the cost function corresponds to the cus-
tomer’s value of time, the third term denotes the arc-based
charge in the network, and the fourth term is the fare paid to
the subway network.

AMoD operators service customers and control the rebal-
ancing of vehicles’ routes to ensure that vehicles are available
to service customer requests, while, in keeping with the
assumption of a perfect market, the routes for the passenger-
carrying vehicles stem from the optimal intermodal routing
of the customers (cf. Problem 3). Without loss of generality,
we fold the AMoD operators into a unique operator, paying
tolls τR(i, j) to the municipal authority and levying fares
pR(i, j) from the customers for each road arc traversed. As
the AMoD operator is unable to influence the AMoD prices
pR(i, j) in a perfect market, the goal of maximizing revenue
is equivalent to the goal of minimizing operating expenses.
Again, we include a negligible quadratic regularization term
to ensure strict convexity such that the AMoD operator solves
the following problem:

Problem 4 (AMoD Operator Optimization Problem). Given
the customer flows { fm (·, ·)}m, the optimal AMoD rebalancing
flows f0 (·, ·) result from

min
f0(·,·)

∑
(i, j)∈AR

(VD,R · si j +VE · ei j + τR(i, j)) · f0 (i, j)+VQ · f0 (i, j)2

s.t. Eq. (1b), Eq. (1c). (20)

Analogous to Section II-D, we reformulate Problems 3 and
4 in matrix notation. Let [c̃R]a :=VT · ti j + pR(i, j) and [c̄0]a :=
VD,R ·si j+VE ·ei j+τR(i, j)∀(i, j)∈AR, [c̃W]a :=VT ·ti j ∀(i, j)∈
AW, [c̃P]a := VT · ti j ∀(i, j) ∈ AP, and [c̃C]a := VT · ti j ∀(i, j) ∈
AC.

Problem 5 (I-AMoD Customers Optimization Problem Revis-
ited). Given a transportation request rm = (om,dm,αm) ∈ R,
I-AMoD a customer’s route results from

min
xR,m,xW,m,
xP,m,xC,m

VQ · x⊤R,mxR,m + c̃⊤R xR,m +VQ · x⊤W,mxW,m + c̃⊤WxW,m

+VQ · x⊤P,mxP,m + c̃⊤P xP,m +VQ · x⊤C,mxC,m + c̃⊤C xC,m

(21a)

s.t. Bxm = bm (21b)
xm ≥ 0, (21c)

where the linear terms in (21a) capture travelling cost, the
quadratic terms comprise the regularization, and the matrix
equality constraint (21b) ensures flow conservation.

Problem 6 (AMoD Operator Optimization Problem Revis-
ited). Given the customer flows {xm}m, the optimal AMoD
rebalancing flows result from

min
x0

VQ · x⊤0 x0 + c̄⊤0 x0 (22a)

s.t. BR

(
∑

m∈M

xR,m + x0

)
= 0 (22b)

x0 ≥ 0. (22c)

While the linear term in the (22a) represents travelling cost,
the quadratic term denotes the regularization, and (22b)
enforces vehicle conservation.

Lemma III.1. Problem 3 and Problem 5 are equivalent.

Lemma III.2. Problem 4 and Problem 6 are equivalent.

The proofs of Lemmas III.1 and III.2 are identical to the
proof of Lemma II.2.

Lemma III.3. Problem 3 is feasible and has a unique solution.

Proof. Let
{
{ fm (·, ·)}⋆m, f0 (·, ·)⋆

}
be a guaranteed feasible

solution to Problem 1 (cf. Lemma II.3). Then, fm (·, ·)⋆ is
a feasible, yet suboptimal, solution to Problem 3. Hence,
Problem 3 is feasible. Uniqueness follows analogously to
Lemma II.3 .

Lemma III.4. Problem 4 is feasible and has a unique solution.

Proof. Since there are no capacity constraints, the proof
follows analogously to Lemma II.3 and III.3.

B. A Pricing and Tolling Scheme

The subway fares pP(i, j) and the road tolls τR(i, j) are
control variables that the welfare-minded municipal authority
can adjust to steer self-interested customers and the AMoD
operator towards maximizing social welfare as defined in
Section II-D.

We denote the dual multipliers associated with the road
capacity constraint (18d) as µcR, and the dual multipliers
associated with the vehicle balance constraints (18b) as λR. To
ease the notation we let µcR(i, j) := [µcR]a and λR(i) := [λR]i.

We propose the following pricing and tolling scheme: The
subway fares are set equal to the the public transit operational
cost as

pP(i, j) =VD,P · si j, (23)

whilst the road tolls are chosen equal to the road congestion
multipliers as

τR(i, j) = µcR(i, j). (24)

Since these terms are arc-dependent, the road tolls might be
levied through GPS-based services, whilst the pubic transit
fares might be approximated with zone-based pricing schemes.

C. A General Equilibrium

Given the market presented in Section III-A, we can define
its general economic equilibrium as follows:

Definition III.5 (General Economic Equilibrium). A
solution

{
{ fm (·, ·)}⋆m, f0 (·, ·)⋆

}
and a set of prices

{pP(i, j),τR(i, j), pR(i, j)} form a general economic
equilibrium if and only if i) fm (·, ·)⋆ is a solution to
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Problem 3 for all m ∈ M , ii) f0 (·, ·)⋆ is a solution to
Problem 4, and iii) the economic profit of each AMoD
operator is zero (that is, the operator’s revenue equals its
costs).

Remark III.6. The requirement that, at equilibrium, the
economic profit of each AMoD operator equals the costs
is characteristic of perfect markets, where sellers have no
economic surplus [40]. The condition does not imply that
AMoD operators receive no profit whatsoever; indeed, the cost
VD,R captures the operators’ normal profits, which compensate
them for their risk and opportunity cost. This condition has an
intuitive interpretation. At equilibrium, no operator can lower
their prices, since they would then be better off leaving the
market; at the same time, no operator can increase its prices,
since all customers would prefer to be served by a cheaper
competitor.

Assume the AMoD road prices pR(i, j) equal to the sum of
the vehicles’ operating costs, the road tolls, and the origin and
destination prices as

pR(i, j) =VD,R · si j +VE · ei j + τR(i, j)+λR(i)−λR( j). (25)

Different to the road tolls τR(i, j) that the AMoD operator
pays to the municipal authority, the road prices pR(i, j) are
the costs of AMoD transportation that customers pay to the
AMoD operator.

Remark III.7. The AMoD origin-destination prices
∑(i, j)∈AR

(λR(i)− λR( j)) fm (i, j) for a request r = (o,d,α)
simplify to λR(o) − λR(d), capturing the marginal cost
incurred to rebalance the system due to the request.

The following theorem shows that the pricing and tolling
scheme proposed in Section III-B ensures that an optimal
solution to the I-AMoD Problem 1 coincides with a general
economic equilibrium for the market.

Theorem III.8 (Optimal Pricing and Tolling Scheme). Con-
sider the optimal solution

{
{ fm (·, ·)}⋆m, f0 (·, ·)⋆

}
to the

I-AMoD problem. Also, consider a perfect market where self-
interested customers plan their routes with a navigation app
solving Problem 3, a self-interested AMoD operator plans
rebalancing routes by solving Problem 4, and the munic-
ipal transportation authority sets public transit prices and
road tolls according to (23)–(24). Then, the optimal solution{
{ fm (·, ·)}⋆m, f0 (·, ·)⋆

}
and the prices (25) are a general

economic equilibrium for the I-AMoD market; that is:

1) fm (·, ·)⋆ is an optimal solution to Problem 3;
2) f0 (·, ·)⋆ is an optimal solution to Problem 4;
3) the AMoD operator’s revenue equals their costs (up to

the regularization term).

Proof Sketch. The proof relies on showing that satisfaction
of the KKT conditions for the I-AMoD Problem 2 implies
satisfaction of the KKT conditions for the customers’ optimal
routing Problem 5 and the KKT conditions for the AMoD op-
erator’s optimal rebalancing Problem 6. We provide a rigorous
proof in Appendix C.

D. Discussion

A few comments are in order. First, in the setting of a
general equilibrium, we assume that the AMoD operators have
no pricing power, i.e., no individual AMoD operator is able to
single-handedly influence the customers’ fares. This assump-
tion holds if multiple operators of similar size compete for
customers’ transportation demands, and is arguably realistic in
several urban environments. For reference, no fewer than five
app-based mobility-on-demand operators (Uber, Lyft, Juno,
Curb and Arro) currently offer mobility-on-demand services in
Manhattan. Second, in this paper, the operations of all AMoD
operators are captured through a single rebalancing flow and a
single set of customer-carrying flows on road arcs for simplic-
ity and ease of notation. However, the model does not assume
that a single AMoD operator is present. Indeed, a scenario
where different operators control different subsets of vehicles,
each associated with a rebalancing flow, would result in the
same equilibrium. Note that customers, not AMoD operators,
choose the operator by selecting the customer-carrying flows
{ fm (·, ·)}⋆m, and the operators do not compete on prices. There-
fore, Theorem III.8 still holds as the operation of single AMoD
operators are not coupled, and Problem 4 can be decomposed
into subproblems, one for each operator. Third, we assume
that the routes followed by customer-carrying AMoD vehicles
are set by the customers themselves through the navigation
apps. In practical implementations, the customers may be able
to choose only among a limited set of possible routes, for
example between a direct route that incurs congestion tolls
and a longer, less congested and thus less expensive route.
Such more sophisticated route selection models are left to
future research. Fourth, we use the cost function (19) to model
customers’ behaviour. Although such an approach does not
entail the level of detail of a user-centric approach [30, Ch. 4],
it suffices to meet the mesoscopic perspective of this study.
Finally, Theorem III.8 shows that the socially optimal solution
can be achieved as a general economic equilibrium. However,
it does not prove that the flows

{
{ fm (·, ·)}⋆m, f0 (·, ·)⋆

}
and

the prices {pP(i, j),τR(i, j), pR(i, j)} are the only equilibrium
for the system; indeed, other equilibria may exist that result
in higher societal cost compared to the socially optimal
solution. To overcome this, we envision a market that could
be steered towards the socially optimal equilibrium through
the introduction of a non-profit market-making entity whose
role it is to match supply with demand while steering the
system towards the socially-optimal equilibrium, akin to the
role of non-profit Independent System Operators in electricity
markets.

IV. RESULTS

In this section, we assess the benefits of an I-AMoD system
in terms of travel time, costs, and emissions for real-world case
studies of NYC and Berlin. Section IV-A details these case
studies before we present the optimal solution for the I-AMoD
system in Section IV-B. Additionally, we study the change
in global cost for different vehicle architectures. Finally, we
compare the optimal solution for the I-AMoD system and the
AMoD system operating in isolation in Section IV-C.
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TABLE I
REQUESTS IN BERLIN AND NYC.

NYC Berlin

M 8,658 2,646
∑m∈M αm 44.943 1/s 3.771 1/s
∑m∈M αm∥om −dm∥2/∑m∈M αm 2.4 km 4.0 km

Fig. 3. Measure of the “betweenness” centrality for each node in the road
digraphs of Berlin (left) and Manhattan (right). The broad and well-connected
structure of Berlin is reflected in several nodes with a high degree of centrality,
whereas the elongated shape of Manhattan results in less central nodes.

A. Case Study

We focus on two distinct metropolitan areas, namely, the
Manhattan peninsula in NYC, NY, and the city center of
Berlin, Germany, as they are complementary in the following
parameters: First, the cities differ in the spatial structure of
their road systems. Fig. 3 shows the “betweenness” centrality
of road nodes computed as the probability that a shortest
path between two random nodes will traverse the given node.
The center of Berlin covers a broad region with several
nodes that show a high centrality, whereas Manhattan has less
homogeneously distributed central nodes and a more elongated
and thinner urban shape. Second, although their surface is
nearly equal in size, the amount of trip requests in Manhattan
exceeds the amount of trip requests in Berlin by one order of
magnitude (cf. Table I). Finally, the geodesic distance between
origin-destination-pairs in Berlin is on average twice as long
as in NYC.

We derive transportation requests as follows: For Manhattan,
we consider the actual 53,932 taxi rides which took place on
March 1, 2012 between 6 PM and 8 PM (courtesy of the New
York Taxi and Limousine Commission). Although this number
of trips is quite large, it represents only a fraction of the travel
demand: In 2017 the number of ride-sharing vehicles used in
this time period outnumbered yellow cabs by a factor of 5 [45].
Hence, we increase the number of requests by a factor of six
to emulate the total demand for ride-hailing services during
this time window, obtaining a total of 8,658 origin-destination
pairs. For Berlin, we use data from the MATSim [46] Berlin
case study [47]. In order to provide a fair comparison, we
scale the demand in order to match the demand of Manhattan

Fig. 4. The public transit network of Berlin (left) and NYC (right).

in terms of requests pro capite. For both cities we derive the
road network from OpenStreetMap data [48], and define the
capacity of each street to be proportional to the number of
lanes multiplied by the road’s speed limit [13]. To account
for exogenous vehicles on the road, we perform a parametric
study, varying the scaling factor of the exogenous road usage
uR between 50% and 200% of the nominal road capacity
cR. We set the maximum increase in travel time caused by
AMoD vehicles ∆rtime to 5%. Since in this paper we study the
achievable benefits of complementing an AMoD taxi service
with a parallel public transit infrastructure from a strategic
planning perspective, we assume the subway network to be the
only public transportation system in Manhattan, in line with
the fact that the subway network is the dominant public transit
mode of the city [49], whereas in Berlin we also include the
S-Bahn and the tram lines (Fig. 4). Therefore, our results can
be interpreted as a first order assessment of the improvements
achievable by shifting traffic from road-based to other means
of transportation in an intermodal fashion. We construct the
public transportation digraph using the geographical location
of the lines and the stops found in the NYC Open Data
database [50] as well as the time schedules of the MTA [51],
whereas for Berlin we directly use GTFS data [52]. We set
the time to transfer from a road node or a public transit
stop to a walking node, which models the time required to
exit an AMoD vehicle or a public transit station, to one
minute. We assume that 90 seconds are required to go from
a pedestrian to a road node and get into an AMoD vehicle,
which is in line with the average time to hail a ride in
Manhattan [53]. The time to transfer from a walking node
to a public transit line equals one minute plus one half of the
frequency of the line. We compute the cost of operating the
Subway in NYC by considering the additional costs incurred
by servicing more passengers with the already running public
transportation network. Specifically, we scale the operational
costs per passenger miles [54, pp. 20] accounting exclusively
for energy consumption and maintenance expenses [55, pp.
VI–127]. For Berlin, we adjust such costs according to [56].
We directly relate the energy consumption to the CO2 emis-
sions based on the current electricity sources of the state
of New York [57] and Germany [58], whereas we consider
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TABLE II
NUMERICAL DATA FOR THE CASE STUDIES

Parameter Variable Value Source

Maximum time increase ∆rtime 5 %
Value of time VT 24.40 USD/h [59]
Vehicle operational cost VD,R 0.57 USD/mile [60]

NYC Berlin
Subway operational cost VD,P 0.03 USD/mile 0.02 USD/mile [54]–[56]
Cost of electricity VE 0.25 USD/kWh 0.33 USD/kWh [61], [62]
Cost of gasoline VE 0.07 USD/kWh 0.18 USD/kWh

Air density ρair 1.25 kg/m3

Final drive efficiency ηfd 98 % [37]
Motor efficiency ηm/g 90 % [37]
Battery efficiency ηdis/chg 90 % [37]
Engine efficiency ηe 40 % [37]

LWV SUV
Engine drag Pe,0 1.6 kW 4 kW [37]
Mass of the vehicle mv 750 kg 2000 kg [37]
Rolling friction coefficient cr 0.008 0.017 [37]
Frontal drag coefficient cd ·Af 0.4 m2 1.2 m2 [37]

molar mass ratio between CO2 and CH2 for gasoline [39]. We
compute the energy consumption as in Section II-C for the
different vehicles studied, namely, a Lightweight (LW) and a
Sport Utility (SU) vehicle. Table II summarizes the remaining
parameters used in our case studies and their bibliographic
sources.

For each of the scenarios presented in the next Sections IV-B
and IV-C, the quadratic optimization Problem 1 was solved
on commodity hardware (Intel Core i7, 16 GB RAM) using
Gurobi 8.1 in less than 5 minutes.

B. Optimal Solution for the I-AMoD System

Here we set out to study the performance achievable by the
I-AMoD system by solving Problem 1 considering an AMoD
fleet of LW BEVs for different levels of exogenous road usage.
Specifically, a 50% baseline road usage corresponds to the case
with little traffic, whereas a 200% usage corresponds to the
heavy traffic congestion that several urban areas are suffering
nowadays. Fig. 5 and 6 show the distance-based modal share
in Berlin and NYC for different levels of road usage, together
with the average travel time, CO2 emissions, and monetary
cost (JM without quadratic regularization terms), scaled with
the average geodesic distance between origin-destination-pairs.
As exogenous road traffic increases, public transit utilization
grows. With even more traffic the walking distance also
increases because public transit cannot fully replace a point-
to-point means of transportation. At the same time, the travel
time and monetary costs increase, while emissions drop sig-
nificantly. Very similar results were obtained for the morning
peak hours (not included here for brevity), suggesting that the
proposed approach has broad validity. The AMoD modal share
follows a similar trend in both cities, whereas the public transit
modal share is significantly higher in Berlin, especially under
high levels of traffic, as it results from the better and cheaper
public transportation system of the European city. Overall,
Berlin achieves a slightly better performance whilst achieving
significantly lower CO2 emissions due to the higher cost of
energy in Europe and the different energy mix.

Fig. 5. Distance-based modal share for the I-AMoD system in Berlin with a
fleet of lightweight electric vehicles.

Fig. 6. Distance-based modal share for the I-AMoD system in NYC with a
fleet of lightweight electric vehicles.

Fig. 7 shows the road tolls τR(i, j) from Eq. (24) for a
baseline road usage of 150%. In NYC, the average cost of fares
paid due to tolls along trips corresponds to about 0.38 USD.
In Berlin, the average surcharge would result in 0.71 USD per
trip. Considering that in the German city the average distance
between origin-destination-pairs is 1.7 times larger than in
NYC, the average surcharges are comparable.

1) Comparison between Fractional and Integer Solution:
To justify our discussion on fractional flows, we study the dif-
ference between the fractional and the integer-valued solution
by solving Problem 1, imposing additional integer constraints

fm (i, j) ∈ Z ∀(i, j) ∈ A ,m ∈ M , f0 (i, j) ∈ Z ∀(i, j) ∈ AR. (26)

To improve the model’s computational tractability, we set
the small quadratic regularization cost VQ to zero for this
comparison, and solve Problem 1 subject to Eq. (26). Table III
shows that the resulting integer-valued and fractional solutions
coincide in terms of cost but not always in terms of routes,
since VQ = 0 results in a non-strictly convex problem with
possibly multiple solutions. The negligible difference in terms
of costs validates our fractional flow relaxation for mesoscopic
studies.
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Fig. 7. Optimal road tolls in USD for Berlin (left) and NYC (right).

TABLE III
RELATIVE DIFFERENCE BETWEEN INTEGER AND FRACTIONAL FLOWS.

Cost CO2 Time Flows

Relative difference [%] 0.012 0.000 0.016 7

Fig. 8. The optimal solution for different vehicles’ configurations for NYC
with a 100% baseline road usage shows the impact of the vehicle category
and the powertrain type on the optimal system performance and operation.

2) Impact of the AMoD Vehicles’ Characteristics: We study
the impact of different vehicles’ categories and powertrain
types on the solution. In particular, we consider a BEV and
an ICEV from the LW and the SU class, and solve Problem 1
for NYC with a 100% baseline road usage. Fig. 8 shows the
results in terms of social cost, road usage, and CO2 emissions,
scaled with respect to the LW BEV case. Moreover, it shows
the costs resulting when applying the operational strategies for
the LW BEV fleet to fleets with different vehicles. The societal
cost increases the more inefficient the vehicle gets, whilst the
relative road usage drops. This reveals that a SU BEV is
socially worse than a LW ICEV despite having a significantly
more efficient powertrain, as trucks are heavier and suffer more
drag, resulting in a lower optimal road usage. In fact, the CO2
emissions caused by the electric SUV are more than twice as
large compared to the LW BEV and close to the emissions of
the LW ICEV. Additionally, it can be seen that the vehicle type
affects the optimal operation of the fleet: Operating the fleets
using the solution for LW BEVs is suboptimal in terms of
both societal costs and emissions, revealing the importance of
considering operational implications and dependencies while
taking strategic fleet design decisions and vice versa. Finally,
the results for the fleet of SU ICEVs entail emissions one
order of magnitude larger and slightly higher societal costs,
highlighting the inefficiency of such vehicles.

C. Comparison with the Pure AMoD System

We repeat the studies from Section IV-B for the AMoD
system operating in isolation to quantify the improvement

Fig. 9. Relative difference in travel time, cost, and emissions, between AMoD
and I-AMoD in Berlin and in NYC.

potential of the intermodal system. We obtain the AMoD
solution by simply setting public transit capacity to zero.
The “infinite” capacity of the pedestrian network guarantees
feasibility even under extremely congested conditions. For the
pure AMoD system, the AMoD modal share (namely, the
average distance covered by car per trip) observed in both
cities is very similar to the one displayed in Fig. 5 and 6.
Fig. 9 shows the relative decrease in average travel time, CO2
emissions, and monetary cost achievable by coordinating the
AMoD fleet with the public transportation system. In NYC,
as the road usage increases, coordination with public transit
allows a reduction of up to 40% in travel time, cost, and
emissions compared to the uncoordinated case. In Berlin, the
relative difference in travel time and social cost is 15% larger
compared to NYC, whilst CO2 emissions are slightly less
affected. Interestingly, at low levels of exogenous traffic, the
pure AMoD system achieves slightly lower travel times at the
expense of a higher societal cost, due to the higher cost of
energy and the lower operational costs of public transit in
the German city. Overall, while the road system in Berlin
allows for fewer possible routes than the dense and aligned
road structure of NYC, the German public transportation
system provides a better service, resulting in more than 50%
improvements. In both cities, the number of cars decreases by
about 30%.

Fig. 10 shows that due to the severe congestion constraints,
the difference in road usage is minor. However, the higher
road tolls would cause an average surcharge of 1.02 USD per
trip in NYC (2.7× the I-AMoD surcharge) and 4.05 USD
in Berlin (5.7× the I-AMoD surcharge), which is strikingly
in line with the proposal to tax mobility-on-demand vehicles
with a congestion surcharge of 2 to 5 USD per trip [33]. The
relatively larger increase in Berlin highlights the lower road
density of the city. Overall, I-AMoD results in shorter travel
times, fewer vehicles, as well as much lower emissions and
tolls.

V. CONCLUSION

In this paper, we explored the possibility of coordinating
different modes of transportation in congested urban envi-
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Fig. 10. Relative congestion difference in % for Berlin (left) and NYC (right).

ronments in order to satisfy travel requests whilst maximiz-
ing social welfare. We presented a network flow model for
an Autonomous Mobility-on-Demand (AMoD) system that
cooperates with the public transportation network. Besides
computing optimal customer and vehicle routes, we designed a
pricing and tolling scheme that allows to steer selfish agents to
the social optimum under the assumption of a perfect market.
Through real-world case studies for Manhattan and Berlin,
we investigated how the structural differences of their urban
transportation networks impact the optimal performance and
operation of a centralized intermodal AMoD system. Specifi-
cally, our results for Berlin show significantly lower emissions
and a slightly better service quality. Berlin’s better-connected
and less expensive public transportation helps overcome the
disadvantages caused by longer average customer trips and,
compared to New York, a less dense road structure. Moreover,
we characterized the impact of the fleet characteristics by com-
paring lightweight vehicles and SUVs powered by an electric
motor or a gasoline engine. Our numerical studies revealed the
vehicle size to have a comparable importance as the powertrain
type, whilst underlining the benefit of accounting for the fleet
characteristics when devising operational strategies and vice
versa. Finally, we showed that optimizing the customers and
the rebalancing routes by jointly considering the AMoD fleet
and public transit can significantly reduce travel time, costs,
number of vehicles and emissions. The optimal road tolls
computed within our framework are quantitatively in line with
the surcharges for ride-hailing trips recently discussed by the
New York City municipal authority, and significantly lower
than for the AMoD system in isolation.

This work opens the field for several research directions.
First, it is of interest to design an operational algorithm to
compute the optimal customer and rebalancing routes at the
microscopic level in real-time [63]. Second, it is of interest to
extend our model to capture stochastic effects such as time-
varying congestion, public transportation delays, and variable
customer demand. Third, we would like to combine our model
with a power-in-the-loop AMoD model [18], in order to
investigate to which extent intermodality can improve the in-
teraction with the electric power grid. Fourth, we are interested
in carrying out more systematic case-studies including road-
based public transportation means such as buses and shuttles,
thereby also accounting for their real-time operation. Finally,
we would like to explore more human-centered optimization
objectives such as travel comfort and switch-over costs.
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APPENDIX

A. Optimization Variables

fm (i, j) Flow of customers on arc (i, j)
f0 (i, j) Flow of empty vehicles on arc (i, j)
[xm]a Flow of customers of demand m on arc a
[xR,m]a Flow of customers on road arc a
[xW,m]a Flow of customers on walking arc a
[xP,m]a Flow of customers on public transit arc a
[xC,m]a Flow of customers on switching arc a
[x0]a Flow of empty vehicles on arc a

B. Elements of Graph Theory

In the following discussions, we use the following defini-
tions, adapted from [64].

Definition A.1 (Directed Graph and Directed Path). A directed
graph (digraph) of order n is a pair G = (V ,A ), with a set V
of n elements (vertices) and a set A ⊆V ×V of ordered pairs
of vertices (arcs). A directed path is an ordered sequence of
vertices such that any pair of consecutive vertices represents
an arc in the digraph.

Definition A.2 (Strongly Connected Graph). A digraph G is
strongly connected if there exists a directed path between any
two vertices.

Definition A.3 (Incidence Matrix). Let G be a directed graph
with n nodes and m arcs. Number the nodes of G with a unique
i ∈ {1, . . . ,n} and its arcs with a unique a ∈ {1, . . . ,m}. The
incidence matrix B ∈ {−1,0,1}n×m of G is defined as

[B]ia =


+1 if node i is the sink node of arc a,
−1 if node i is the source node of arc a,
0 otherwise.

(27)

C. Proof of Theorem III.8

Proof. The proof relies on showing that the prices and tolls
(23)–(25) align the incentives of self-interested agents with the
social optimum. Namely, customers account for the induced
congestion and the AMoD operational costs through the road
prices, and for the public transit operation through its fares.
Similarly, the road tolls ensure that a selfish AMoD system
operator accounts for the congestion caused by its vehicles.
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By Lemmas II.2, III.1, and III.2 the proof of 1) and 2)
reduces to showing that if ({xm}⋆m,x⋆0) is a solution to Problem
2, then x⋆m is a solution to Problem 5 for all m ∈ M and
x⋆0 is a solution to Problem 6. Part 3) follows as a corollary.
Informally, we proceed by showing that under the given prices
if ({xm}⋆m,x⋆0) satisfies the KKT conditions for Problem 2, then
x⋆m and x⋆0 satisfies the KKT conditions for their respective
problems. As all problems are strictly convex and satisfy the
linearity constraint qualification, the KKT conditions provide
necessary and sufficient conditions for optimality [65].

Formally, we first prove 1). To simplify the nota-
tion let Gm(λ ,x) := λ⊤(Bx − bm),N := {1, . . . , |A |} and
NR := {1, . . . , |AR|}. The KKT conditions suggest that
({xm}⋆m,x⋆0) is a solution to Problem 2 iff there exists
({λC,m,µNN,m}m,µNN,0,λR,µcR) so that

0 =VQ · x⋆R,m + cR +
∂Gm(λC,m,x⋆m)

∂xR,m
−µNN,R,m

+B⊤
R λR +µcR ∀m ∈ M

0 =VQ · x⋆W,m + cW +
∂Gm(λC,m,x⋆m)

xW,m
−µNN,W,m ∀m ∈ M

0 =VQ · x⋆P,m + cS +
∂Gm(λC,m,x⋆m)

xP,m
−µNN,P,m ∀m ∈ M

0 =VQ · x⋆C,m + cC +
∂Gm(λC,m,x⋆m)

xC,m
−µNN,C,m ∀m ∈ M

0 =VQ · x⋆0 + c0 −µNN,0 +B⊤
R λR +µcR

0 = [µNN,m]i[x⋆m]i, ∀i ∈ N ,m ∈ M

0 = [µNN,0]i[x⋆0]i, ∀i ∈ NR

0 = [µcR]i

[
∑

m∈M

x⋆R,m + x⋆0 −hR

]
i

∀i ∈ NR

0 ≤ µcR, 0 ≤ µNN,m, 0 ≤ µNN,0, 0 ≤ x⋆m, 0 ≤ x⋆0 ∀m ∈ M .

Similarly, x̃⋆m is a solution to Problem 5 if and only if there
exists (λ̃C,m, µ̃NN,m) such that

0 =VQ · x̃⋆R,m + c̃R +
∂Gm(λ̃C,m, x̃⋆m)

∂ x̃R,m
− µ̃NN,R,m (28a)

0 =VQ · x̃⋆W,m + c̃W +
∂Gm(λ̃C,m, x̃⋆m)

∂ x̃W,m
− µ̃NN,W,m (28b)

0 =VQ · x̃⋆P,m + c̃S +
∂Gm(λ̃C,m, x̃⋆m)

∂ x̃P,m
− µ̃NN,P,m (28c)

0 =VQ · x̃⋆C,m + c̃C +
∂Gm(λ̃C,m, x̃⋆m)

∂ x̃C,m
− µ̃NN,C,m (28d)

0 = [µ̃NN]i[x̃⋆m]i ∀i ∈ N (28e)
0 ≤ µ̃NN,m, 0 ≤ x̃⋆m. (28f)

By direct comparison we observe that if c̃R = cR +B⊤
R λR +

µcR, c̃W = cW, c̃S = cS, and c̃C = cC then (x̃⋆m, λ̃C,m, µ̃NN,m) =
(x⋆m,λC,m,µNN,m) is indeed solution to (28) and x̃⋆m is therefore
the unique optimal solution to Problem 5. By definition of c̃R
and cS we may equivalently write

pR(i, j) =VD,R · si j +VE · ei j +[B⊤
R λR]a +[µcR]a

=VD,R · si j +VE · ei j +λR(i)−λR( j)+µcR(i, j)

pP(i, j) =VD,P · si j.

for all (i, j) ∈ AR and (i, j) ∈ AP, respectively.
We now focus on 2): x̄⋆0 is a solution to Problem 6 if and

only if there exists (λ̄R, µ̄NN,0) such that

0 =VQ · x̄⋆0 + c̄0 +B⊤
R λ̄R − µ̄NN,0 (29a)

0 = [µ̄NN]i[x̄⋆0]i ∀i ∈ NR (29b)
0 ≤ µ̄NN,0, 0 ≤ x̄⋆0. (29c)

We observe that if c̄0 = c0 + µcR, then (x̄⋆0, λ̄R, µ̄NN,0) =
(x0,λR,µNN,0) solves (29) and x̄⋆0 is therefore the unique
optimal solution to Problem 6. Hence, the pricing scheme is

τR(i, j) = [µcR]a = µcR(i, j) ∀(i, j) ∈ AR.

Finally, we focus on 3) and show that, up a regularization
term, AMoD operators make no profit. Their revenue R equals
incomes minus costs as

R = (B⊤
R λR)

⊤
∑

m∈M

xm − c̄⊤0 x0 =−(B⊤
R λR + c̄0)

⊤x0

=−(B⊤
R λR + c̄0 −µNN,0)

⊤x0 =VQ · x⊤0 x0,

which is indeed zero up to regularization.
This concludes the proof.
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