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Analysis, Control, and Evaluation of Mobility-on-Demand Systems:
a Queueing-Theoretical Approach

Rick Zhang, Federico Rossi, and Marco Pavone∗

Abstract—This paper presents a queueing-theoretical approach
to the analysis, control, and evaluation of mobility-on-demand
(MoD) systems for urban personal transportation. A MoD system
consists of a fleet of vehicles providing one-way car sharing
service and a team of drivers to rebalance such vehicles. The
drivers then rebalance themselves by driving select customers
similar to a taxi service. We model the MoD system as two
coupled closed Jackson networks with passenger loss. We show
that the system can be approximately balanced by solving
two decoupled linear programs and exactly balanced through
nonlinear optimization. The rebalancing techniques are applied
to a system sizing example using taxi data in three neighborhoods
of Manhattan. Lastly, we formulate a real-time closed-loop
rebalancing policy for drivers and perform case studies of two
hypothetical MoD systems in Manhattan and Hangzhou, China.
We show that the taxi demand in Manhattan can be met with
the same number of vehicles in a MoD system, but only require
1/3 to 1/4 the number of drivers; in Hangzhou, where customer
demand is highly unbalanced, higher driver-to-vehicle ratios are
required to achieve good quality of service.

I. INTRODUCTION

Car sharing promises to be a cost effective and sustainable
alternative to private urban mobility by allowing a split of hefty
ownership costs, increasing vehicle utilization, and reducing
urban infrastructure needed for parking [1]. One type of
vehicle-sharing service, called mobility-on-demand (MoD),
consists of stacks or racks of light electric vehicles parked at
many different stations throughout a city [1]. Each customer
arrives at a station, takes a vehicle to the desired destination,
and drops off the vehicle at that station.

MoD systems have been advocated as a key step toward
sustainable personal urban mobility in the 21st century [1].
They present, however, a number of operational challenges.
In particular, due to the asymmetry of customer demands,
vehicles tend to aggregate at some stations and be depleted
elsewhere, causing the system to become unbalanced [2]
and leading to an overall reduction in quality of service.
Rebalancing approaches in car sharing systems are typically
categorized into (1) user-based rebalancing and (2) operator-
based rebalancing. User-based approaches typically introduce
financial incentives to influence trip origins and destinations
as well as encourage ride sharing or splitting [3]. However,
these strategies typically cannot meet all of the rebalanc-
ing needs of the system, since it is difficult to model and
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control user behavior [4]. Operator-based rebalancing, the
main focus of this paper, involves sending hired drivers to
different parts of the cities to rebalance the vehicles. Previous
works on operator-based rebalancing strategies often formulate
the problem as a mixed-integer linear program to maximize
the profit generated by the system [5], [6] and subject to
fixed rebalancing costs. However, these formulations do not
directly account for the rebalancing of the drivers themselves,
if, say, public transit is not readily available. The drivers
may be rebalanced using shared shuttles [7] or by ferrying
passengers to their destinations, much like a taxi service [8].
It is worth noting that rebalancing for MoD systems has also
been studied in the context of autonomoous vehicles under
a fluidic model [2], a queueing network model [9], and a
decentralized Gaussian Process-based model [10].

The objective of this paper is to develop a queueing-
theoretical framework for the analysis, control, and evalua-
tion of (human-driven, non-autonomous) mobility-on-demand
systems. We then apply the insights from this queueing frame-
work to develop real-time closed-loop policies to control such
systems. On the modeling and analysis side, we consider a
model similar to the one proposed in [8], where drivers are
themselves rebalanced by driving a portion of the customers to
their destinations. In this way, the MoD system can be viewed
as a one-way customer-driven car sharing service mixed with
a taxi service. The model presented in [8] hinges upon the
optimization of rebalancing rates and is studied under a fluidic
approximation (where customers, drivers, and vehicles are
modeled as a continuum). While this model offers insights
into the minimum number of vehicles and drivers required in
a MoD system, it does not provide key performance metrics
in terms of quality of service (i.e., the availability of vehicles
at stations or the customer wait times). These shortcomings
are addressed by [9] for an autonomous MoD system, where
the system is modeled as a stochastic queueing network from
which key performance metrics are derived. This paper can be
viewed as an extension of the models in [8], [9] to human-
driven MoD systems taking into account both vehicles and
rebalancing drivers. On the control side, real-time closed-loop
policies for one-way car sharing systems have been studied
in [5] and [6] with the objective of maximizing profit, where
the rebalancing of vehicles is modeled as a cost. Our paper
differs from these works in two key respects: 1) in addition
to minimizing cost, our key objective is quality of service for
customers in terms of vehicle availabilities and wait times, and
2) we explicitly control the movement of rebalancing drivers
which makes the system self-contained (e.g., drivers do not
need to rely on public transit to rebalance themselves).

Our contribution in this paper is fourfold. First, we model
a MoD system within a queueing-theoretical framework that
takes into account the coupled rebalancing of vehicles and
drivers. Specifically, our approach is to model a MoD system
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as two coupled closed Jackson networks with passenger loss.
Second, we present two approaches for the open-loop control
of a MoD system. In the first approach, the optimal rebalancing
parameters are solved by two decoupled linear programs, and
are therefore efficient to compute, but only approximately
guarantee balance of the system. In the second approach,
nonlinear optimization techniques are used (with higher com-
putational cost) to balance the system exactly. Third, we
apply such approaches to the problem of system sizing and
test them on a case study in Manhattan, showing that the
optimal vehicle-to-driver ratio in a MoD system deployed
in the city should be between 3 and 5. Finally, leveraging
the aforementioned open-loop control strategies, we devise
a real-time closed-loop rebalancing policy and demonstrate
its performance for case studies of two hypothetical MoD
systems in Manhattan and Hangzhou, China. In particular, we
show that a MoD system can satisfy all existing taxi demands
in Manhattan with around the same number of vehicles as
current taxis (approximately 11,000), but only needs 1/3 to 1/4
the number of drivers. In Hangzhou, where demand is highly
unbalanced, we show that a higher driver-to-vehicle ratio of
1/3 to 1/2 is required to achieve good quality of service.

The rest of this paper proceeds as follows: Section II reviews
some key results in the theory of Jackson networks. Section
III describes in detail our queueing network model of a MoD
system. Section IV offers the approaches for the open-loop
control of a MoD system. The rebalancing techniques are
then applied to a system sizing example based on taxi data
in Manhattan. In Section V we introduce a real-time closed-
loop control policy useful for practical systems, and in Section
VI we study its performance on MoD systems in Manhattan
and Hangzhou, China. Finally, in Section VII we draw our
conclusions and provide directions for future research.

A preliminary version of this paper appeared as [11]. In
this revised and extended version, we provide as additional
contributions proofs of all results, an expanded description of
the real-time closed-loop rebalancing algorithm, and two new
case studies for MoD systems operating in Manhattan and in
Hangzhou, China.

II. BACKGROUND MATERIAL

In this section we recall a few fundamental concepts from
the theory of queueing networks, and in particular Jackson
networks, that will be used throughout the rest of the paper.
We refer the interested reader to [9], [12] for more in-depth
discussions.

A Jackson network is a class of Markovian queueing
networks whereby the routing distribution (the probability of
transitioning to node j from node i), rij , is stationary and
the service rate at each node i, µi(xi), only depends on the
number of agents at that node, xi [12, p. 9]. In equilibrium,
the throughput at each node (i.e., the average number of agents
passing through the node per unit time), {πi}|V |i=1, of a closed
Jackson network (i.e., with a fixed number of agents moving
among the nodes, with no external arrivals or departures)
satisfies the balance equations

πi =
∑
j∈V

πjrji, for all i ∈ V. (1)

Note that (1) does not yield a unique solution and only
determines π = (π1 π2 ... π|V |)

T up to a constant factor.

Accordingly, π is referred to as the relative throughput. The
stationary probability distribution of a closed Jackson network
with m agents is given by

P(x1, x2, ..., x|V |) =
1

G(m)

|V |∏
j=1

π
xj

j

xj∏
n=1

µj(n)−1,

where G(m) is a normalization constant required to make
P(x1, x2, ..., x|V |) a probability measure. It turns out that many
performance metrics of the network can be expressed in terms
of the normalization constant G(m). Two such performance
metrics are of interest to us: 1) the actual throughput of each
node (see [12, p. 27]) is given by

Λi(m) = πiG(m− 1)/G(m), (2)

and 2) the probability that a node has at least one agent,
referred to as the availability of node i ([13], [14]), is given
by

Ai(m) = γiG(m− 1)/G(m), (3)

where γi = πi/µi(1) is referred to as the relative utilization of
node i. In general, solving for G(m) is quite computationally
expensive, especially when m is large. A well-known iterative
technique called mean value analysis (MVA) [15] enables us
to compute the mean values of performance metrics without
explicitly solving for G(m). The MVA algorithm is described
in detail in [9], [16].

III. MODEL DESCRIPTION AND PROBLEM FORMULATION

A. MoD system model
In this section we formally describe the MoD system under

consideration and cast it within a queueing network framework
by modeling the system as two coupled, closed Jackson
networks. We consider N stations with unlimited parking
capacity placed in a given geographical area, mv vehicles
that can be rented by customers for one-way trips between
stations, and md “rebalancing” drivers employed to rebalance
the vehicles by driving them to the stations where they are
needed. After rebalancing the vehicles, the drivers themselves
become unbalanced – they need to get back to locations
with an excess of vehicles. To “rebalance” the drivers, we
propose a mechanism whereby the drivers drive a portion of
customers to their destinations, effectively operating as a taxi
service. This requires each driver to always have access to
a vehicle since the driver’s task involves driving a vehicle
with or without a customer. (A driver left at a station without
a vehicle is effectively “stranded”.) We therefore pose the
constraint vi ≥ di, where vi is the number of vehicles at
station i and di is the number of drivers at station i (note that
in this framework, we do not allow multiple drivers to occupy
the same vehicle). With this requirement, we may view the
MoD system as two systems operating in parallel – a one-way
customer-driven car sharing service with mv − md vehicles
and a taxi service with md vehicles. It is worth noting that
there are other, more elaborated ways of managing a MoD
system which we do not address in this paper. For example,
in [8], the authors also consider customers potentially riding
with multiple drivers. One could also envision a system where
drivers can drive other drivers or take public transportation to
stations with excess cars. In these cases, a key challenge is the
explicit modeling of the movement of the drivers, which could
be represented using a separate queueing network. If drivers
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can take other forms of transportation not explicitly modeled
by the queueing network, it may be included as an additional
rebalancing cost, similar to [5]. The extension of our model
to such cases is an interesting avenue for future research.

Fig. 1. Left: MoD system model. Yellow dots represent customers and red
dots represent rebalancing drivers. Customers can drive themselves or ride
with a rebalancing driver. Customers are lost if no vehicles are available
(station 1). Right: each customer arriving at station i is delegated to either
System 1 (customer-driven vehicles) or System 2 (taxi system).

Customers arrive to station i according to a Poisson process
with parameter λi. Upon arrival at station i, the customer
selects a destination j with probability pij , where pij ≥ 0,
pii = 0, and

∑
j pij = 1. Furthermore, we assume that the

probabilities {pij}ij constitute an irreducible Markov chain.
The customer can travel to his/her destination in one of two
ways: 1) the customer drives a vehicle to his/her destination, or
2) the customer is taken to his/her destination by a rebalancing
driver. The travel time from station i to station j is an
exponentially distributed random variable with mean Tij > 0.
The assumptions of Poisson arrivals and exponential travel
times not only simplify the problem, but have been shown
to be reasonable approximations in terms of their predictive
accuracy in similar spatial queueing models for vehicle routing
[9]. We employ a “passenger loss” model similar to [9],
[14], where if a vehicle is not available upon the arrival
of a customer, the customer immediately leaves the system.
However, due to the additional complexity of our MoD model
(a one-way car sharing service and a taxi service in parallel)
the passenger loss assumption is more involved. We assume
that upon arrival at a station, a customer is delegated to one
of the two parallel systems by the MoD service operator (see
Fig. 1). The customer is lost if there are no available vehicles
in the system to which he/she was delegated. For example,
if a customer is delegated to the taxi system and no taxis
are immediately available, the customer cannot switch over
to the other system and drive himself/herself to the desired
destination. This assumption is needed to maintain tractability
in the Jackson network model. The modeling consequences
of this assumption will be further discussed in the next
section. The performance criterion of interest in this case is
the probability a customer will find an available vehicle (both
empty vehicles and taxis) at each station. In Section V we
will relax the passenger loss assumption and investigate the
more realistic scenario where customers form a queue to wait
for available vehicles. The performance of the system is then
measured by customer wait times.

B. Jackson network model of a MoD system
We now formally cast the MoD model described in the

previous section within a queueing network framework. The
key is to construct an abstract queueing network where the

stations are modeled as single-server (SS) nodes and the roads
as infinite-server (IS) nodes, as done in [9], [14]. Vehicles form
a queue at each SS node while waiting for customers and are
“serviced” when a customer arrives. The vehicle then moves
from the SS node to the IS node connecting the origin to
the destination selected by the customer. After spending an
exponentially distributed amount of time (with mean Tij) in
the IS node, the vehicle moves to the destination SS node.
With this setup, we have described a closed Jackson network
with respect to the vehicles. To capture the idea that the MoD
system consists of two systems (customer-driven system and
taxi system) operating in parallel, we model the MoD system
as two coupled closed Jackson networks. More formally,
let System 1 represent the Jackson network of mv − md

customer-driven vehicles, and System 2 represent the network
of md taxis. Let S(k) represent the set of SS nodes and I(k)

represent the set of IS nodes in the kth Jackson network, where
k = {1, 2}. For each network, each SS node is connected to
every other SS node through an IS node. Thus, each network
consists of N + N(N − 1) = N2 nodes (the IS node from
station i to itself is not represented since pii = 0). For each
IS node i ∈ I(k), let Parent(i) and Child(i) be the origin and
destination of i, respectively. The routing matrix {r(k)

ij }ij in
Jackson network k can then be written as

r
(k)
ij =


p

(k)
il i ∈ S(k), j ∈ I(k), i = Parent(j), l = Child(j),

1 i ∈ I(k), j ∈ S(k), j = Child(i),

0 otherwise,
where the first case is the movement from a SS node to
an IS node and the second case is from an IS node to its
unique destination SS node. The service times at each node
are exponentially distributed with mean service rates

µ
(k)
i (n) =

{
λ

(k)
i if i ∈ S(k),
n
Tjl

if i ∈ I(k), j = Parent(i), l = Child(i),

where n is the number of vehicles in the IS node. With this
formulation we have defined two closed Jackson networks of
the same form as in [9], amenable to analysis. Fig. 2 illustrates
the topology of a simple system cast as a closed Jackson
network.

Fig. 2. A three-station system (System 1 or System 2) cast as a closed Jackson
network. Circles represent SS nodes and rectangles represent IS nodes.

We now return to the customer arrival process and the loss
model assumption. Recall that customers arrive at station i
according to a Poisson process with rate λi. Upon arrival,
customers at station i going to station j are split into either
System 1 or System 2, with fixed probability. This can be seen
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as a Bernoulli splitting of the customer arrival process into
two Poisson processes for each desired destination. Denote
by λ

(1)
i the total rate of customers delegated to System 1,

by p
(1)
ij the routing probabilities associated with System 1

(p(1)
ij ≥ 0, p(1)

ii = 0,
∑
j p

(1)
ij = 1), by λdel

i the total rate
of customers delegated to System 2, and by ηij the routing
probabilities associated with System 2. We have the relation-
ship λi = λ

(1)
i +λdel

i for each station i. We define qi to be the
total fraction of customers delegated to System 1 at station
i, i.e., qi := λ

(1)
i /λi. We can also write 1 − qi = λdel

i /λi.
The routing probabilities for the customers are then split up
as follows

pij = P(i→ j | System 1) qi + P(i→ j | System 2) (1− qi)
= p

(1)
ij qi + ηij (1− qi). (4)

We can equivalently say that the Poisson rate of customers
originating at station i and headed for station j is λi pij . The
arrival rate of these customers to System 1 is then λ

(1)
i p

(1)
ij

and the arrival rate to System 2 is λdel
i ηij . Thus relation (4)

can be rewritten as

λi pij = λ
(1)
i p

(1)
ij + λdel

i ηij . (5)

If the delegation process is known (i.e., λdel
i and ηij are

known), the routing probabilities for System 1 can be solved
by rearranging (4) as

p
(1)
ij = pij/qi − ηij(1− qi)/qi. (6)

Note that since the delegation process is controlled by the ser-
vice operator, the rate and probability distribution of customers
delegated (λdel

i and ηij) can be viewed as control inputs, and
optimized. In Section III-C we will describe in detail how to
solve for λdel

i and ηij . Arrival rates λ(1)
i , routing probabilities

p
(1)
ij , and mean travel times Tij fully describe the System 1

Jackson network.
Now we consider the second Jackson network, System 2,

which models the md vehicles operating as a taxi service.
This network must not only provide service to customers but
also rebalance the MoD system to ensure quality of service.
To incorporate the notion of vehicle rebalancing, we use the
concept of “virtual” customers as in [9]. Virtual customers
are generated at station i according to a Poisson process with
parameter ψi and routing probabilities ξij , independent from
the real customer arrival process. Virtual customers are lost
upon arrival if a taxi is not immediately available, just like real
customers. In this way, virtual customers promote rebalancing
while not enforcing a strict rebalancing rate, which is key to
retaining tractability in the model. The overall customer arrival
rate (real and virtual) at station i for System 2 is

λ
(2)
i = λdel

i + ψi.

With respect to the vehicles, λ(2)
i is the exponentially dis-

tributed service rate at SS node i ∈ S(2). The routing
probabilities for this network can be defined as

p
(2)
ij = P(i→ j | virtual)

ψi

λ
(2)
i

+ P(i→ j | real)
λdel
i

λ
(2)
i

= ξij
ψi

λ
(2)
i

+ ηij
λdel
i

λ
(2)
i

= ξij pi + ηij (1− pi), (7)

where pi := ψi/λ
(2)
i , similar to the definition in [9].

To summarize our Jackson network model, customers arrive
at station i headed for station j according to a Poisson process
with rate λi pij . Upon arrival, each customer is delegated to
one of two systems, the customer-driven system (System 1) or
the taxi system (System 2). The probability of the customer
(going from station i to j) being delegated to System 1 is
λ
(1)
i p

(1)
ij

λi pij
and the probability of the customer being delegated

to System 2 is λdel
i ηij
λi pij

(from (6)). Once the customer has been
delegated, if he/she finds the station empty of vehicles, he/she
immediately leaves the system. Once delegated, a customer
cannot switch from System 1 to System 2 or vice versa. We
note that in the same way that ψi represents the rebalancing-
promoting rate of vehicles in the MoD system, λdel

i represents
the rebalancing-promoting rate of the drivers. Together, the
parameters ψi, ξij , λdel

i , and ηij constitute the open-loop
controls for our model of a MoD system. The open-loop
control problem is formalized and solved in Section IV.

C. Performance criteria

The task to control the MoD system involves optimizing the
parameters λdel

i (rebalancing the drivers) and ψi (rebalancing
the vehicles) as well as the routing probabilities ηij and ξij .
The key performance metric is the availability of vehicles (the
probability that a customer will find an available vehicle),
given by (3). In [14] it was shown that for a closed Jackson
network of the form described in the previous section, the
availability satisfies limm→∞Ai(m) = γi/γ

max
S , for all i ∈ S,

where γi is the relative utilization at node i ∈ S, S is the set
of station nodes, and γmax

S := maxi∈S γi. As the number of ve-
hicles increases, the set of stations B := {i ∈ S : γi = γmax

S }
will have availability approaching one while all other stations
will have availability strictly less than one. Thus, a natural
notion of rebalancing, introduced in [9] for autonomous MoD
systems, is to ensure that Ai(m) = Aj(m) for all i, j ∈ S (or
equivalently γi = γj for all i, j ∈ S, as implied by (3)). The
relative utilizations for each Jackson network are defined as
follows

γ
(1)
i =

π
(1)
i

µ
(1)
i

=
π

(1)
i

λi − λdel
i

∀i ∈ S(1),

γ
(2)
i =

π
(2)
i

µ
(2)
i

=
π

(2)
i

λdel
i + ψi

∀i ∈ S(2),

where π(k)
i , i ∈ S(k), k = {1, 2} satisfies (1). For autonomous

MoD systems, the constraint γi = γj embodies two features:
1) fairness, as characterized by equal availability across all
stations, and 2) performance, since the availability at each
station approaches 100% as the number of vehicles increases.
We will apply this constraint to both Jackson networks in
our MoD system as firstly it is a direct generalization of the
approach used for autonomous MoD systems and secondly
it yields a linear optimization problem (Section IV-A) that
is easy to compute and scale to large systems. However, as
discussed in Section IV-B, such approach only approximately
balances the system (even though the approximation is often
remarkably good). We then introduce a modified approach
in Section IV-C that relies on nonlinear optimization, which
does ensure fairness while maintaining system performance,
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but incurs a higher computational cost. Collectively, the open-
loop control approaches of Section IV are useful for analysis
and design tasks such as system sizing (Section IV-D) and
drive the development of closed-loop policies (Section V).

IV. ANALYSIS AND DESIGN OF MOD SYSTEMS

A. Approximate MoD rebalancing
In this section we formulate a linear optimization approach

to (approximately) rebalance a MoD system. Specifically, we
would like to manipulate the control variables λdel

i , ψi, ηij ,
and ξij such that γ

(1)
i = γ

(1)
j for all i, j ∈ S(1) and

γ
(2)
i = γ

(2)
j for all i, j ∈ S(2). To minimize the cost of

MoD service, we would like to simultaneously minimize the
mean number of rebalancing vehicles on the road (minimize
energy use and possibly congestion), given by

∑
i,j Tij ξij ψi,

as well as the number of rebalancing drivers needed, given by∑
i,j Tij (ξij ψi + ηij λ

del
i ). We can state this multi-objective

problem as follows:
MoD Rebalancing Problem (MRP): Given a MoD system
modeled as two closed Jackson networks, solve

minimize
λdel
i ,ψi,ηij ,ξij

∑
i,j

Tij ξij ψi and
∑
i,j

Tij (ξij ψi + ηij λ
del
i )

subject to γ
(k)
i = γ

(k)
j i, j ∈ S(k), k = 1, 2 (8)∑

j

ηij = 1,
∑
j

ξij = 1,

ηij ≥ 0, ξij ≥ 0, λdel
i ≥ 0, ψi ≥ 0

λdel
i ηij ≤ λipij i, j ∈ {1, . . . , N}

Note that the last constraint in the MRP ensures that the
number of customers delegated to the taxi system does not
exceed the total number of customers.

Remarkably, the MRP can be solved as two decoupled
linear optimization problems with the same form as in [8]
(which uses a deterministic, fluidic model). This result, stated
in Theorem IV.5, constitutes the main contribution of this
section. By decoupling the constraints, we can show that
the two objectives are indeed aligned, i.e., minimizing the
second objective will minimize the first as well. We begin
by presenting supporting lemmas that are used in the proof of
Theorem IV.5. The first two lemmas establish some structural
properties of the model and were introduced in [11]. They
are restated here for completeness; their proofs are virtually
identical to the proofs in [11] and are omitted. The first lemma
allows the balance equations of the Jackson network to be
solved by considering only the SS nodes.

Lemma IV.1 (Folding of balance equations). Consider either
System 1 or System 2 from Section III-B. The relative through-
puts π’s for the SS nodes can be found by solving the reduced
balance equations

π
(k)
i =

∑
j∈S(k)

π
(k)
j p

(k)
ji ∀i ∈ S(k), k = {1, 2}, (9)

where SS nodes are considered in isolation. The π’s for the
IS nodes are then given by

π
(k)
i = π

(k)
Parent(i)p

(k)
Parent(i)Child(i) ∀i ∈ I

(k), k = {1, 2}. (10)

Lemma IV.2. For any rebalancing policy {ψi}i and {ξij}ij ,
it holds for all i ∈ S(2)

1) γ(2)
i > 0,

2) (λdel
i + ψi) γ

(2)
i =

∑
j∈S(2) γ

(2)
j (ψj ξji + λdel

j ηji).
Similarly, for System 1,

1) γ(1)
i > 0,

2) (λi − λdel
i ) γ

(1)
i =

∑
j∈S(1) γ

(1)
j (λj pji − λdel

j ηji).

In the next two lemmas, we introduce new optimization
variables {αij}ij and {βij}ij and show that the constraints
γi = γj in the MRP are equivalent to linear constraints in
these new variables. The proofs are similar to the proof of
Theorem IV.3 in [9].

Lemma IV.3 (Constraint equivalence for System 1). Assume
that the {βij} ’s are given. Set λdel

i =
∑
j 6=i βij , ηii = 0, and

for j 6= i,

ηij =

{
βij/λ

del
i if λdel

i > 0,

1/(N − 1) otherwise.

With this definition, the constraint∑
j∈S(1),j 6=i

(βij − βji) = λi −
∑

j∈S(1),j 6=i

λj pji (11)

is equivalent to the constraint

γ
(1)
i = γ

(1)
j , i, j ∈ S(1).

Proof. First, rewrite (11) in terms of λdel
i and ηij’s. We then

have
λi − λdel

i =
∑
j 6=i

(λj pji − λdel
j ηji).

Substituting this expression into the last statement of Lemma
IV.2, we have∑

j 6=i

(λj pji − λdel
j ηji)

 γ
(1)
i =

∑
j 6=i

γ
(1)
j (λj pji − λdel

j ηji).

(12)
Let ϕij := λj pji − λdel

j ηji and ζij := ϕij/
∑
j ϕij . Note

that
∑
j ϕij = λi − λdel

i = λ
(1)
i > 0 by assumption.

The variables ζij can be considered transition probabilities
of an irreducible Markov chain, and (12) can be rewritten in
matrix form as Zγ(1) = γ(1). Matrix Z is an irreducible,
row stochastic matrix, so by the Perron-Frobenius theorem
[17], the eigenspace associated with the eigenvalue 1 is one-
dimensional. Therefore the unique solution to Zγ(1) = γ(1)

(up to a scaling factor) is the vector (1, ..., 1)T , so γ(1)
i = γ

(1)
j

for all i, j.

Lemma IV.4 (Constraint equivalence for System 2). Assume
that the {αij} ’s are given. Set ψi =

∑
j 6=i αij , ξii = 0, and

for j 6= i,

ξij =

{
αij/ψi if ψi > 0,

1/(N − 1) otherwise.

With this definition, the constraint∑
j 6=i

(αij − αji) =
∑
j 6=i

(βji − βij) (13)

is equivalent to the constraint

γ
(2)
i = γ

(2)
j , i, j ∈ S(2).
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The proof is essentially identical to the proof of Lemma
IV.3 and is omitted. Furthermore, we can substitute (11) into
(13) and rewrite (13) as∑

j 6=i

(αij − αji) = −λi +
∑
j 6=i

λjpji. (14)

With this substitution, we have decoupled the original MRP
constraints into those associated with System 1 (λdel

i and
ηij) and those associated with System 2 (ψi and ξij). Using
Lemmas IV.3 and IV.4, one can also show that minimizing the
second objective in the MRP also minimizes the first objective.
We now state the main result of this section.

Theorem IV.5 (Solution to MRP). Consider the following two
decoupled linear optimization problems

minimize
βij

∑
i,j

Tij βij (15)

subject to
∑
j 6=i

(βij − βji) = λi −
∑
j 6=i

λj pji

0 ≤ βij ≤ λi pij

minimize
αij

∑
i,j

Tij αij (16)

subject to
∑
j 6=i

(αij − αji) = −λi +
∑
j 6=i

λj pji

0 ≤ αij

These problems are always feasible. Let β∗ij and α∗ij be
optimal solutions to problems (15) and (16) respectively. By
making the following substitutions

λdel
i =

∑
j 6=i

β∗ij ,

ψi =
∑
j 6=i

α∗ij ,

ηij =


0 if i = j,

β∗ij/λ
del
i if λdel

i > 0, i 6= j,

1/(N − 1) otherwise,

ξij =


0 if i = j,

α∗ij/ψi if ψi > 0, i 6= j,

1/(N − 1) otherwise,

one obtains an optimal solution to the MRP.

Proof. Problem (16) is an uncapacitated minimum cost flow
problem and is always feasible. Problem (15) is a standard
capacitated minimum cost flow problem and its capacity
constraints can be shown to always permit the existence of a
feasible solution [8], [18, p. 191]. The main task of the proof
is showing that the constraints γ(k)

i = γ
(k)
j are equivalent to

the constraints in (15) and (16), which is shown in Lemmas
IV.3 and IV.4.

This result allows us to compute the open-loop control very
efficiently and can be applied to very large systems comprising
hundreds of stations. We apply this technique in the next
section to compute the availability of vehicles at each station
and in Section IV-D to the problem of “sizing” a MoD system.

B. Availability of vehicles for real passengers

In general, the availability of vehicles at each station in
the customer-driven system is different from the taxi system.
The approach in the previous section calculates the availability
of the two systems separately, but the availability of vehicles
in the taxi system applies not only to real customers, but to
virtual customers as well. To calculate the availability for all
(real) passengers, we must consider both systems concurrently.
First, we note that the total throughput of both real and virtual
customers for both networks is given by

Λtot
i (mv,md) = Λ

(1)
i (mv −md) + Λ

(2)
i (md).

The throughput of only real passengers is given by

Λpass
i (mv,md) = Λ

(1)
i (mv −md) +

λdel
i

λdel
i + ψi

Λ
(2)
i (md),

where the second term on the right hand side reflects the
fraction of real passengers in the taxi network. Thus, the
vehicle availability for real passengers is given by

Apass
i (mv,md) = Λpass

i (mv,md)/λi.

With some algebraic manipulations, Apass
i (mv,md) can be

rewritten as

Apass
i (mv,md) = A

(1)
i (mv−md)qi+A

(2)
i (md)(1−qi). (17)

Since qi is in general not the same for all i, the availability
of vehicles for real passengers will not be the same for
every station. Fig. 3 shows that the rebalancing technique
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Fig. 3. Overall vehicle availability for passengers for a randomly generated
system with 20 stations. Blue lines represent the availability of each station as
a function of the number of vehicles. Note that the availability at each station
is different, thus the overall system is unbalanced. The red line shows the
availability if there were as many drivers as vehicles (as in an autonomous
MoD system). 3(a) shows a vehicle-to-driver ratio of 3, 3(b) shows a vehicle-
to-driver ratio of 5, and 3(c) shows a vehicle-to-driver ratio of 10.

described in the previous section will produce unbalanced
vehicle availabilities for real passengers. Furthermore, the
degree of system imbalance grows with the vehicle-to-driver
ratio, which intuitively makes sense since there are fewer
drivers to rebalance the system when the vehicle-to-driver ratio
is high. However, it is important to note that even though the
availabilities at each station are not the same, as mv → ∞
and md →∞, the availabilities approach one for all stations.

The red line in Fig. 3 shows the availability of the system
if there were mv drivers and mv vehicles (or equivalently a
taxi system or an autonomous MoD system). It is clear that
the autonomous MoD system yields better performance both
in terms of throughput (high availability) and fairness (same
availability at all stations) due to the ability of every vehicle
to perform rebalancing trips. This result presents a strong case
for the advantages of autonomous MoD systems over current
human-driven MoD systems in operation.
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C. Exact MoD rebalancing
It is clear that applying the rebalancing constraints sepa-

rately for the two networks as done in (8) does not yield a
balanced system in terms of vehicle availability for all cus-
tomers. Indeed, the constraints needed to balance availability
for the passengers is
Apass
i (mv,md) = Apass

j (mv,md) ∀i, j ∈ {1, ..., N}. (18)
This set of constraints is dependent on the number of vehicles
and the number of drivers in the system, and relative utiliza-
tions γi can no longer be used to evaluate the constraints in
place of real availabilities (3). Thus, constraints (18) cannot
be reduced to linear constraints in the optimization variables.
Taking into account the modified constraints, we reformulate
our problem to the following:
Exact MoD Rebalancing Problem (EMRP): Given a MoD
system with N stations, mv vehicles, and md drivers modeled
as two closed Jackson networks, solve

minimize
λdel
i ,ψi,ηij ,ξij

∑
i,j

Tij ξij ψi − c
∑
i

A
(2)
i (mv −md) (19)

subject to γ
(1)
i = γ

(1)
j

Apass
i (mv,md) = Apass

j (mv,md)∑
j

ηij = 1,
∑
j

ξij = 1

ηij ≥ 0, ξij ≥ 0, λdel
i ≥ 0, ψi ≥ 0

λdel
i ηij ≤ λipij i, j ∈ {1, . . . , N}.

The objective function now trades off two objectives that are
not always aligned – minimizing the number of rebalancing
trips while maximizing the overall availability (note that the
first constraint balances and maximizes the availability of the
customer-driven system, so to maximize overall availability,
we only need to maximize the availabilities in the taxi system).
A weighting factor c is used in this trade-off. The constraint
γ

(1)
i = γ

(1)
j is used in conjunction with (18) to ensure the

availability of the customer-driven system remains balanced.
The strategy is to use the taxi system to enforce the availability
constraint for real customers with the intuition that the system
operator has full control over the rebalancing of the taxi system
while the rebalancing of the customer-driven system depends
on the arrival process of the customers, which is subject to
large stochastic fluctuations. If the customer-driven system
becomes unbalanced, empty vehicles will accumulate at some
stations for extended periods of time, decreasing the effective
number of vehicles in the system (see Section V).

The modified availability constraint (18) is nonlinear and
involves solving for A(2)

i using MVA at each iteration (A(1)
i is

also needed, but only needs to be computed once). For systems
of reasonably small size (∼ 20 stations and ∼ 1000 vehicles),
MVA can be carried out quickly (< 1 sec). For larger networks,
an approximate MVA technique exists which involves solving
a set of nonlinear equations rather than iterating through all
values of m [15]. The EMRP can be solved using nonlinear
optimization techniques for a given number of vehicles and
drivers. We let A∗ represent the balanced availability Apass

i
obtained by solving the EMRP.

To demonstrate this technique on a realistic system, key
system parameters (arrival rates, routing probabilities, and
travel times) were extracted from a portion of a data set of
New York City taxi trips (courtesy of the New York City Taxi
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(a) c = 1, A∗ = 0.5327.
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(b) c = 10, A∗ = 0.8988.
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(c) Pareto optimal curve of EMRP
(c = 1, 2, 3, 4, 5, 6, 10, 15, 20, 50).
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(d) Linear solution.

Fig. 4. Nonlinear optimization results for a 20 station system based on Lower
Manhattan taxi trip data. The blue lines represent the availability at each
station. In 4(a) and 4(b), the availability curves converge to a single value,
A∗. This is the point at which the system is balanced. 4(a) shows the optimized
availability curves for c = 1. 4(b) shows the optimized availability curves for
c = 10. 4(c) shows the Pareto optimal curve obtained by increasing c from
1 to 50. The x-axis can be interpreted as the average number of rebalancing
vehicles on the road. 4(d) shows the linear optimization results for comparison.

and Limousine Commission). Specifically, a 20-station system
was created using taxi trips within Lower Manhattan (south
of 14th St.) between 10 and 11am on March 1, 2012. The
EMRP is solved for this system with 750 vehicles and 150
drivers (mv/md = 5). Fig. 4 shows the resulting availability
curves and the trade-off between rebalancing rate and system
performance.

Fig. 4 shows that as the weighting factor c is increased, vehi-
cle availability increases at the cost of an increased number of
rebalancing trips up to a point where it levels off (in this case
around 90%). This result compares favorably with the linear
solution (4(d)), where at mv = 750, the availabilities range
from 0.84 to 0.94. In general, the linear optimization technique
appears suitable for computing a first approximation of key
design parameters of the system, and the nonlinear technique
can be used to further refine the solution. Finally, compared to
an autonomous MoD system with the same number of vehicles
(red line in Fig. 4(d)), the overall availability is 5% lower (90%
vs. 95%). This further shows that autonomous MoD systems
would achieve higher levels of performance compared to MoD
systems.

D. Application to system sizing

Though the linear programming approach (Section IV-A)
does not yield identical availabilities across all stations, it is
nonetheless useful for applications such as fleet sizing due
to its scalability and efficiency. In this section we provide
a simplified example of how to use the MRP approach to
gain insight into the optimal vehicle-to-driver ratio (mv/md)
of a MoD system. The idea is to find the optimal number
of vehicles and drivers that would minimize total cost (or
maximize profit) while maintaining an acceptable quality of
service. For this simple example, the total cost (normalized
by the cost of a vehicle) is

ctotal = mv + crmd, (20)
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where cr is the cost ratio between a vehicle and a driver. It is
reasonable to assume that the cost of a driver is greater than the
cost of a vehicle, so cr ≥ 1. Three MoD systems are generated
using portions of the New York City taxi data: 1) Lower
Manhattan (A1), 2) Midtown Manhattan (A2), and 3) Upper
Manhattan (A3). Taxi trips within each region are aggregated
and clustered into 20 stations, and the system parameters (λi,
pij , and Tij) are estimated. Different travel patterns in the
three systems allow us to generalize our insights about the
optimal mv/md required to minimize cost. For each system
with a fixed mv/md, the MRP is solved and the number of
vehicles and drivers needed are found such that the lowest
availability across all the stations is greater than the availability
threshold. Three availability thresholds are investigated (85%,
90%, and 95%). Fig. 5(b) shows the total cost as it varies with
the vehicle-to-driver ratio and with cr for Lower Manhattan
with 90% availability threshold. The optimal vehicle-to-driver
ratio is the minimum point of each line in 5(b). Fig. 5(c)
shows the optimal vehicle-to-driver ratios plotted against the
cost ratio cr for all three Manhattan suburbs and all three
availability thresholds.
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(c) Optimal vehicle-to-driver ratio

Fig. 5. 5(a) shows the color-coded regions we consider in this case study.
5(b) shows the total cost as a function of the vehicle-to-driver ratio for cr
values ranging from 1 to 10. mv and md values at each point in each
curve can be solved using (20). mv and md satisfies the constraint that
the availability at each station is greater than the threshold of 90%. 5(c)
shows the optimal vehicle-to-driver ratio for the 3 suburbs of Manhattan and
3 availability thresholds (85%, 90%, 95%). For example, the curve A1-90%
in 5(c) is constructed by taking the minimum cost of each curve in 5(b).

A few insights can be gained from this example. First, the
optimal mv/md ratio does not significantly increase with in-
creasing cost ratio. Second, the optimal mv/md ratio decreases
as the availability threshold is raised, consistent with the idea
that a high quality of service requires more rebalancing, and
thus more drivers. Third, the optimal mv/md ratio is clearly
different for each of the Manhattan suburbs (which highlights
the important system-dependent nature of this value) but stays
between 3 and 5 for a wide range of cost.

V. CLOSED-LOOP CONTROL OF MOD SYSTEMS

In this section we formulate a real-time closed-loop con-
trol policy inspired by the open-loop problems presented in
Section IV. The closed-loop policy relies on receding-horizon
optimization and is targeted towards a practical scenario where
customers wait in line for the next available vehicle rather
than leave the system. The control policy must perform two
tasks: 1) rebalance empty vehicles throughout the network by
issuing instructions to drivers, and 2) assign vehicles (with
or without driver) to waiting customers at each station. In
analogy with the approach in Section IV, we perform these
tasks separately: that is, we design both a vehicle rebalancing
policy and a customer-assignment policy. A vehicle rebal-
ancing policy was introduced in [2] for autonomous MoD
(AMoD) systems, which has been shown to be quite effective
[9]: hence, we adapt it for our system with little modification.
The customer-assignment policy is trickier, and we propose
a mixed-integer linear program (MILP) to select the best
assignment of customers to customer-driven vehicles or taxis
based on the current state of the system. In the proposed
policy, customers arriving at each station join a queue of
“unassigned” customers. A system-wide optimization problem
is solved to try to match as many customers as possible
with either an empty vehicle or a taxi while keeping the
distribution of the customer-driven vehicles balanced across
the system. Once a customer is assigned, he/she moves to
the departure queue where he/she will depart from with an
empty vehicle or with a taxi. The optimization procedure is
performed every time a departure queue is empty and there are
unassigned customers. The goal of keeping the distribution of
customer-driven vehicles balanced stems from early studies we
performed using simple heuristic policies, where we observed
customer-driven vehicles aggregating at a small number of
stations unused for long periods of time, effectively decreasing
the number of vehicles in the system.

Let nvij be the number of customers traveling from station i
to j to be assigned to drive themselves. Let ndij be the number
of customers traveling from station i to j to be assigned to a
taxi. Denote by vei the number of excess unassigned customer-
driven vehicles at station i, vtji the number of customer-driven
vehicles traveling from station j to i, and vaji the number
of customer-driven vehicles at station j assigned to travel to
station i but that have not yet left the station. Assuming these
quantities are known, the number of customer-driven vehicles
at a future time step is v+

i = vei +
∑
j(v

a
ji + vtji + nvji − nvij).

We can additionally define a desired vehicle distribution
vdes
i . For example, an even vehicle distribution would be
vdes
i = (mv −md)/N . Alternatively, the desired vehicle dis-

tribution could be based on demand estimation, for example,
vdes
i = (mv −md)λi/

∑
j λj . The assignment policy is given

by solving the following optimization problem:

minimize
nd
ij ,n

v
ij

∑
i

|v+i − v
des
i | − w

∑
i,j

(ndij + nvij) (21)

subject to ndij + nvij ≤ cuij∑
j

nvij ≤ vei ,
∑
j

ndij ≤ dui

nvij ≥ 0, ndij ≥ 0, nvij ∈ Z, ndij ∈ Z,

where cuij is the number of unassigned customers traveling
from i to j, dui is the number of unassigned drivers at station i,
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and w is a weighting factor. The objective function trades off
the relative importance of system balance and customer wait
times (increasing w would allow the system to assign more
customers and reduce wait times). The constraints ensure that
the assignment policy is feasible (there are enough vehicles,
drivers, and customers). Problem (21) is formulated as a MILP
and solved using the IBM CPLEX solver [19].

The overall real-time closed-loop control policy is presented
in Algorithm 1. Outstanding customers are assigned to either
a customer-driven vehicle or a rebalancer-driven vehicle by
solving Problem (21). The AMoD controller in [2] is then used
to compute a desired rebalancing policy for empty vehicles.
Finally, idle drivers are assigned to drive empty vehicles
according to the desired rebalancing policy.

Algorithm 1 Real-time closed-loop control policy
procedure REALTIMEREBALANCEANDASSIGN
{ndij , nvij} ← solve Problem (21)
for all waitingCustomer(i, j) do

if nvij > 0 and vehicle available at i then
assign waitingCustomer(i, j) to empty vehicle
nvij− = 1

else if ndij > 0 and vehicle and driver avail. then
assign waitingCustomer(i, j) to taxi
ndij− = 1

{RebQueue(s)} ← AMODREBALANCING(veij , d
u
ij)

for s ∈ Stations do
while RebQueue(s) 6= ∅ and driver and vehicle available

at station s do
Send vehicle and driver to a destination in

RebQueue(s)
Remove destination from RebQueue(s)

VI. CASE STUDIES:
MOD IN MANHATTAN AND HANGZHOU

We assess the performance and scalability of the real-
time closed-loop control policy through case studies, based
on real-world transportation data, of two hypothetical MoD
systems. The first MoD system operates over all of Manhattan
(as opposed to small regions as in Section IV-D) and its
customer demand is derived from the dataset used in Section
IV. We place 100 stations within Manhattan based on k-means
clustering of taxi requests. The resulting station positions are
such that customer demands are on average less than 300
meters from the nearest station. The second MoD system
operates in Hangzhou, China, and its customer demand is
derived from a dataset provided by Didi Chuxing. For this case
study customer demand data is only available at an aggregate
level, in terms of sixty-six districts–while this dataset has a
rather coarse spatial resolution, it is nonetheless interesting as
it represents a challenging setting for the operation of a MoD
system, as detailed below.

Specifically, the two case studies illustrate the performance
of the real-time closed-loop algorithm in markedly different
settings: in particular, transportation demand in Hangzhou is
significantly more unbalanced than in Manhattan. We mea-
sure the level of unbalance of transportation requests with
the first Wasserstein distance between the spatial distribution
of customer destinations fd and the spatial distribution of
customer origins fo [20], [21]. The first Wasserstein distance
(also known as earth-mover distance) is defined as

W (fd, fo) := inf
γ∈Γ(fd,fo)

∫
D(pd, po)dγ(pd, po)

where Γ(fo, fd) is the set of all distributions with marginals
fo and fd and D(x, y) is the distance between locations x
and y. The average Wasserstein distance between the origin
distribution and the destination distribution in Manhattan is
0.509 km; the average Wasserstein distance in Hangzhou is
2.129 km, over four times higher.

For each hour of the day, customer arrival rates λi and
routing probabilities pij are estimated by counting the number
of trips that originate and end at each station (or district). The
travel times Tij are estimated from the average vehicle speed
and the Manhattan distance between stations (or districts).
Customer arrivals are generated at each station as a Poisson
process with mean λi and routing probabilities pij . In contrast
to the analysis in the previous section, simulated customers
wait at the station until a vehicle has been assigned to them.

Simulations are performed for different vehicle-to-driver
ratios, for 24 hours with a time step of 6 seconds. The results
of the simulations are shown in Fig. 6.
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(c) Hangzhou, mv/md = 2
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Fig. 6. Average customer wait times throughout the day.

In Manhattan, for a vehicle-to-driver ratio of 3, a system
consisting of 12,000 vehicles and 4,000 drivers yielded a
maximum average wait time of under 5 minutes, which is
indicative of adequate service. For a vehicle-to-driver ratio of
4, satisfactory quality of service is reached between 12,000
and 14,000 vehicles (3,000 to 3,500 drivers). For comparison,
New York City has over 13,000 taxis, and 85% of trips are
within Manhattan. This suggests that by operating a fraction
of the vehicles as a taxi service to maintain system balance,
a MoD system can achieve comparable quality of service to
taxi systems with only 1/4 to 1/3 the number of drivers.

Instead, in Hangzhou, where transportation demand is sig-
nificantly more unbalanced, a lower vehicle-to-driver ratio is
required to achieve good quality of service. With a vehicle-to-
driver ratio of 2, 9,000 cars are sufficient to keep wait times
below 20 minutes, and 15,000 cars reduce the peak wait time
below 15 minutes; conversely, with a vehicle-to-driver ratio of
3, 18,000 vehicles are required to reduce the peak wait time
below 20 minutes and, with a vehicle-to-driver ratio of 4 (not
shown), a fleet of 24,000 vehicles is needed to achieve the
same peak wait time.
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We also compare the simulation results to the queueing
network analysis in Section IV. Using the linear approximate
rebalancing analysis presented in Section IV-A, we study the
availability of vehicles in Manhattan and Hangzhou during
the peak period from 9 to 10 am. The availability curves
are shown in Fig. 7, and compared to a balanced taxi or
autonomous vehicle system (shown in red). In Manhattan, for
a MoD system to achieve the same theoretical performance as
an autonomous MoD with 8,000 vehicles (which, according
to [9], achieves acceptable quality of service, with peak wait
times under 5 minutes), 9,789 vehicles are needed for a
vehicle-to-driver ratio of 3, and 10,267 vehicles are needed
for a vehicle-to-driver ratio of 4. This corroborates well with
simulation results in Fig. 6, which suggests that between
11,000 and 12,000 vehicles are needed. In Hangzhou, 7,473
and 7,880 vehicles are required to achieve 95% availability at
all stations for vehicle-to-driver ratios of 2 and 3, respectively;
such a discrepancy between high availability and long peak
customer wait times is most likely due to the spatial coarseness
of the data.

The driver assignment optimization problem in the simu-
lations was solved in an average of 0.5 seconds. Since the
problem size only scales with the number of stations and
the constraints consist mostly of bounding hyperplanes, the
feasible set is easy to compute and the problem can be solved
in real-time for large scale systems.

(a) Manhattan, mv/md = 3 (b) Manhattan, mv/md = 4

(c) Hangzhou, mv/md = 2 (d) Hangzhou, mv/md = 3

Fig. 7. Vehicle availability during peak demand.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a queueing network model of a
MoD system and developed two open-loop control approaches
useful for design tasks such as system sizing. We applied
such approaches to a system sizing example for three Man-
hattan neighborhoods, which showed that the optimal vehicle-
to-driver ratio is between 3 and 5. Drawing insights from
these techniques, we developed a real-time closed-loop control
policy and demonstrated its effectiveness with case studies of
two hypothetical MoD systems in Manhattan and Hangzhou.

This work paves the way for several important extensions.
First, we plan to include other methods of rebalancing drivers
such as allowing them to use public transit or to shuttle
multiple other drivers to stations with excess unused vehicles.
Second, it is of interest to include congestion effects in our
model. A possible strategy is to modify the IS nodes by con-
sidering a finite number of servers, representing the capacity of

the road. Third, we plan to test our strategies on microscopic
and mesoscopic models of transportation networks. Finally,
we would like to incorporate the effects of dynamic pricing
incentives for customers on the amount of rebalancing that is
required.
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